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I. INTRODUCTION 

The purpose of this thesis is to Investigate the Kalman filter 

equations with complementary constraints and its applications. For 

the benefit of the reader a review of classical filter theory, the 

Wiener filter problem, and Kalman filter equations will be presented. 

This will be followed by the concept of a complementary filter and the 

complementary Kalman filter. 

A. Classical Filter Theory 

The determination of an appropriate electronic network configuration 

to yield a given frequency response is usually referred to as classical 

filter theory. There are basically four types of circuit configurations 

in this theory: low-pass, high-pass, band-pass, and band-stop filters. 

These filters are frequency-selective electronic devices that operate on 

voltage, current, or power. The low-pass filter is designed to pass 

all frequency spectra below some preset frequency and to attenuate all 

frequency spectra above this point. The preset frequency is usually 

referred to as the cutoff frequency or cutoff. The high-pass filter 

passes all frequencies above the cutoff frequency and attenuates those 

below cutoff. The band-pass filter passes frequencies between two 

desired cutoff frequencies, and the band-stop attenuates frequencies 

between the cutoff points. 

Consider the case where a signal, being voltage, current, or power, 

consists of a specified frequency spectra. Suppose the signal is 

corrupted by noise with a differing frequency spectra. Using classical 

filter theory, it is possible to retrieve the signal from the signal 
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and noise combination by using one of the above-mentioned filters or 

some combination of them. The output of the filter will give a good 

replica of the signal. The design of classical filter circuits can be 

found in almost any undergraduate textbook on linear circuit theory. 

However, using the same theory, if the frequency spectra of the 

signal and the noise overlap, then there is no way of retrieving the 

signal without distorting it. Wiener (16) was the first to consider 

the resulting problem of the kind of filter necessary to give the best 

estimate of the signal in 1949. 

B. Optimal Filter 

A compromise has to be made when the signal and noise frequency 

spectra do overlap since the more one attenuates the noise, the more 

distorted the signal becomes. What then is the optimal filter for this 

compromise ? 

There is no single right answer to this question since the problem 

of optimization may be approached many ways depending upon the constraints 

placed upon the filter and the criteria used for best performance. How­

ever, the minimum rms error criterion used as a measure of optimal 

performance is common to nearly all the approaches. Therefore, the best 

filter is the one which minimizes the rms error subject to constraints; 

and the most obvious constraint is that the filter be physically 

realizable—that the response not precede the input.^ 

^In much of the literature this is called causal. 
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A commonly used method to minimize the rms error when the signal 

and noise frequency spectra overlap is referred to as the Wiener filter. 

Referring to Figure 1.1, the basic problem is to find the transfer 

function Y(s) which will minimize the rms difference between x(t) and 

s (t + a).  

s(t) + n(t) Y(s) = ? x(t) « s (t +0!) 

Figure 1,1. General Wiener filter problem 

Note that this is the general Wiener filter problem where either delay 

or prediction is considered depending on the sign of C%. 

There are basically two different approaches in finding Y(s): the 

frequency domain approach used in the Bode-Shannon (3) solution, and 

the time domain approach found in the Wiener solution. These two methods 

are completely Independent approaches to the same problem and both lead 

to the same result. However, as indicated by Brown and Nilsson (6), in 

certain respects the final form of the solution from Wiener's approach 

is easier to apply than the results of the Bode-Shannon solution. 

The general procedure used to find the optimal filter is to write 

the error expression in terms of the weighting function, y(t), and then 

to use calculus of variations to find the optimum y(t), where y(t) is 

the inverse Laplace transform of Y(s). Note that the variational pro­

cedure will not lead directly to a solution for y(t) but only to an 

integral equation in y(t). This is referred to as the Wiener-Hopf 

integral equation which is derived in Brown and Nilsson (6) and 
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Levinson (12) and solved in Brown and Nilsson (6) and Davenport and 

Root (7). The Wiener filter problem includes basic assumptions: (1) 

that the filter must be physically realizable; (2) that the entire 

continuous past history is available for weighting. 

Suppose that the input consists of discrete samples of the signal-

plus-noise instead of continuous samples. The estimation of the signal 

must then be made on a sequence of discrete samples. This might be 

termed the discrete version of the Wiener filter problem. Brown (5) 

looks at the discrete-data filter problem from the weighting function 

approach, which is similar to the Wiener filter continuous data system 

where all past information is used to get an optimal estimate of the 

signal. Each measurement at every time interval is weighted. However, 

if there are too many measurements, the demand on the memory capabilities 

is very large because all past measurements must be stored. A solution 

to this problem describing a step-by-step recursive technique for solving 

the discrete data version of the least-squares smoothing and prediction 

problem was introduced by R. E. Kalman (11) in 1960. 

It should be noted that the above arguments are not limited to the 

case of estimating one signal from one noisy measurement of the signal. 

Kalman's (11) step-by-step procedure may also be used for estimating many 

signals from noisy linear combinations of the signals. 

C. Kalman Filter Equations 

Kalman's (11) paper demonstrated a method of solving the discrete-

data filter problem in the least-squares sense. With these results and 

the advent of the digital computer, problems could be solved that were 
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never before realizable. The Kalman filter equations require less com­

puter memory by updating the estimate of the signals between measurement 

times without requiring storage of all the past measurements. 

The equations and presentation of the Kalman filter here are taken 

largely from unpublished notes by R. G. Brown (5) and only a very brief 

outline of the method is offered in this thesis. The reader is referred 

to these notes or to Sorenson (14) for a more complete derivation. 

Most of the notation in this thesis is the same as that used by 

Brown (5) and is shown below: 

1. A lower case letter denotes a column vector with the exception 

of b and é, 

2. An upper case letter is used to denote a matrix, as are b and i> 

which are also matrices. 

3. A subscript k on any symbol is used to show that the symbol is 

evaluated at time t^; e.g., b^ = b(t^) and = x(t^). 

4. A superscript T on any symbol denotes the transpose of that 

symbol. 

5. A superscript -1 on any symbol denotes the inverse of that 

symbol. 

A mathematical model of the system is assumed to be of the form 

*k+l - 4k*k + Sk (1-1) 

fk - (1-2) 

where 

" State of the system at time t^. 
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é. = Transition matrix. 
k 

= Column vector of state responses due to all of the 

independent white-noise driving functions that occur 

in the interim between t^ and t^^^. (Note that only 

white-noise driving functions are allowed in the 

mathematical model.) 

y^ = Output vector (i.e., the "observable" or measured 

quantity, including noise). 

6yj^ = Observation noise. 

= Output matrix. 

Furthermore, the measurement errors are assumed to be uncorrelated and 

unbiased timewise, i.e., 

for k = j 

L 0 for k 9^ j 
E [ôy^ôyp = ̂  , J , (1-3) 

E [6y^] = 0, for all k (1.4) 

where is a matrix whose terms are the variances and covarlances of 

the respective measurement errors. 

Begin with the linear estimation equation 

where y^ = the observed quantity at time tj^ , 

x^ = Best estimate of x^ based on all past measurements up 

through y^_^ (the a priori estimate of x^) , 

x^ = Best estimate of x^ based on all measured data up 

through y^ (the a posteriori estimate of x^), 
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= "weighting" matrix or "gain" matrix. 

Since the driving functions are white the a priori estimate ̂  of x^ 

is given by 

 ̂= 'k-i K-i 

A 
Also, the output vector y corresponding to x^ is given by 

7̂  " "L A; (1-7) 

The gain matrix b^ is now chosen such as to minimize the loss function L 

which is given by 

L = E [(Xj^ - x^)^ - Xj^)] = E [ej e^] (1.8) 

where e^ is the estimation error. Note that L is a scalar and is just 

the sum of the variances of the estimation errors in the elements of the 

state vector. It can be shown that minimizing this sum is equivalent to 

minimizing each variance individually, so the Kalman filter minimizes 

the mean-square error associated with the estimation of the elements of 

the state vector x^. This is justified in Sorenson (14). 

Now define two error-covarlance matrices as follows: 

^ «k] (1-9) 

- E [e^ (1.10) 

where e^ = (x^ - x^) is the a priori estimation error. 

The expression for the optimal gain matrix b^ is 

"k " ̂k ̂  + V"' "•"> 

The derivation of this equation can be found in Brown (5) and Sorenson (14). 
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The recursive solution can be summarized as follows : a measurement 

is taken at time t^. Before this measurement can be used optimally, 

the a priori estimate and the corresponding error covariance matrix 

Pj^ must be known. Then the procedure is as follows: 

1. Compute the optimum gain matrix b^ according to 

"k ' < + V"' 

2. Revise the a priori estimate to get the a posteriori estimate 

according to 

^ \ • ^k) ^k " "k ^ (1-13) 

3. Compute the a posteriori error covariance matrix according to 

Pk = fk - "k («k« + \> "k 

4. Extrapolate ahead x^ and to get 

*k+l " ̂k+l,k *k (1'15) 

k̂+1 " *̂ k+l,k \̂ k+l,k \ (1.16) 

where = E [g^ g^] . (1.17) 

The process is now ready to be repeated for the next measurement y^^^, 

ad infinitum. Equations 1.12 through 1.17 comprise the recursive 

solution for the Kalcan filter. As is the case for any recursive 

process, initial values for P* and x^ must be specified. 

It should be noted that our measurements y^ are assumed to be 

discrete samples in time. However, if the measurements are continuous 

rather than discrete, the Kalman filter equations can be extended to 
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the time-continuous case by a limiting argument [See Sorenson (14)]. 

In much of the literature, the time-continuous filter is referred to as 

the Kalman-Bucy filter. Unlike the discrete data problem the solution 

of the time-continuous problem yields a set of matrix differential 

equations as follows : 

1. The gain equation is 

b (t) = P(t)M^(t)V ^(t) (1.18) 

2. The state differential equation is 

^ = d(t)x + b (t)[y(t) - M(t)x] (1.19) 

3. The error covariance matrix differential equation is 

^ = d(t)P + Prf'^(t) - FMÎt)v"^(t)M(t)P + G(t)H(t)G^(t) (1.20) 

The derivation and solution of Equations 1.18 through 1.20 can be found 

in Sorenson (14). 

Note that for all the above estimation or filter schemes the 

statistical behavior of the signal is known. Then the question arises, 

what is the best or optimal filter if nothing is known about the 

statistical properties of the signal? The answer is that the optimiza­

tion scheme used must not in any way depend upon the nature of the signal. 

If there is only one measurement of the signal plus-noise, the optimal 

estimate would just be the measurement, which is a trivial solution. 

However, if two independent noisy measurements of the signal are 

available, a better estimate of the signal can be obtained through the 

use of complementary filtering as discussed below. 
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D. The Complementary Filter 

The complementary filter was motivated from the case where nothing 

was known about the signal. For example, consider a situation where 

there are two independent noisy measurements of the same quantity; and 

it is wished to obtain the optimal estimate of the signal knowing only 

the spectral density functions of the noise. With reference to 

Figure 1.2, the problem is to choose Y^(s) and Yg(s) so as to minimize 

the mean square error and not to distort the signal. 

s + n^(t> 

s + n2(t> 

Figure 1.2. Linear combination of two independent 
noisy signals. 

The expression for the output in transformed form is 

X = Y^(S + + YgCS + Ng) (1.21) 

If the following constraint between Y^ and Yg is used 

Yg = 1 - Y^ (1.22) 

then Equation 1.21 becomes 

X = S + [N^Yj + Ngd - Y^)] (1.23) 

Note that the term within the brackets of Equation 1.23 is the error 

term and the choice of Y^ will not affect the signal portion of the 

Yi(s) Yi(s) 

+ _ 

+) *x(t) w s(t) 

• YgCs) 
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output. The error term is then made as small as possible, using the 

minimum mean square error criterion, by the appropriate choice of Y^. 

As shown by Brown and Nilsson (6) the solution for is obtained in 

the same manner as in the Wiener filter problem, except in this case 

n^(t) and n2(t) play the roles of n(t) and s(t) respectively. 

Note that this type of filtering might be called complementary 

filtering because each of the two transfer functions is the complement 

of the other. With reference to Equation 1.23, in the complete absence 

of noise, the output is exactly equal to the signal. Hence, signal 

distortion is not necessary to smooth the noise, as was the case in the 

Wiener filter problem. For this reason this method of filtering is also 

referred to as distortionless filtering. 

The complementary or distortionless filter is not restricted to 

just the two input problem. Consider an m input problem as shown in 

Figure 1.3. 

s + n^(t) Y^(s) 

s + HgCt) 

s + n (t) 
m 

Figure 1.3. Linear combination of m sources 
of information. 

In transformed form x(t) is 

X = (S + N^)Y^ + (S + N2)Y2 + (S + N )Y^ (1.24) 
m m 
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Now if Y = 1 - Y. - Y. - Y , then Equation 1.24 becomes 
m 1 / in~ 1 

X = S + N^Y^ + NgYg + Ngd - Yj - Y^ Y^_^) (1.25) 

The problem is to determine Yj^ through such that the mean square 

value of the error is a minimum. This is similar to the Wiener filter 

problem again, with the exception that there are m-1 degrees of freedom 

in the optimization process. An example of a two-dimensional problem 

can be found in Brown and Nilsson (6). 

The purpose of this thesis is to explore in greater detail the 

Kalman filter equation with the complementary constraint. A large 

majority of the aided inertial navigation schemes proposed to date use 

the conçlementary constraint in one form or another in the estimate of 

position and velocity. Immediately, because of the use of this constraint, 

the question of the extent of knowledge of the behavior of the statistical 

signal arises. Some information about this is known; however, as shown 

by Brock and Schmidt (4), usually such statistics are too complicated 

or are too uncertain to be described analytically with confidence. Also, 

other factors are involved in the filter problem which are impossible, 

or nearly impossible, to describe mathematically. Trade off between 

performance and computer size is one. If one assumes some statistics 

for the signal which are not absolutely correct, it is possible to have 

very large errors. However, using the complementary filter and the 

least squares criterion, in essence an optimal estimate is obtained for 

the worst possible case. That is, the system is a min-max estimator. 

A number of terrestrial navigation schemes include an inertial 

navigation unit and other aiding sources which give the optimal 
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estimates of position and velocity. Generally, the signal variables are 

eliminated from the measurement equations and a new set of measurement 

equations are used that consist only of the noise variables. The optimal 

estimates of the noises are then determined, which in turn are subtracted 

from the original measurement equations to give the estimates of the 

signals. Specific examples can be found in Brock and Schmidt (4) and 

Huddle (10). In view of the reasons described above for the use of 

the complementary filter, a review of some of the methods in achieving 

the optimal complementary filter are in order. 

E. Review of Multiple-Input Complementary Filter 

The purpose of this section is to give a review of some of the work 

that has been done on the multiple-input complementary filter. Both 

the continuous and discrete time systems will be studied via Wiener and 

Kalman filters. 

Benning (2) investigated the case of m inputs which consisted of 

known linear combinations of r signals plus an additive random noise 

with known spectral density functions when nothing was known about the 

signals, hence a multiple-input complementary filter. His method was 

an intuitive scheme for estimating the signals, which can best be 

demonstrated by a simple two-dimensional problem. The intuitive scheme 

is shown in Figure 1.4. 

In Figure 1.4(a) the output is 

X = (S + N^) - (N^ - N2)Y^ = S + N^(1 - Y^) + (1.26) 
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S + n^(t) 

S + ngCt) 

o 
Y (S) 

/n (t) - n (t) 
n^(t) 

-•x(t) 

S + n^Ct) 

S + Rg (t) 

(a) 

n2(t)-nj (t) 
Y^(S) 

(b) 

AgCt) 

<) 
Figure 1.4, Two intuitive systems for estimating s(t). 

->X(t) 

Now if is equal to Yg = 1 - Y^ from Equation 1.22, then Equation 1.26 

becomes 

X = S + [N^Y^ + Ngd - Y^)] (1.27) 

which is identical to Equation 1.23. Also in Figure 1.4(b) if Y^ is 

equal to Y^, then the expression for X is identical to 1.27. 

Benning then extended the intuitive approach to the case where 

there were m measurements of n signals, as shown in Figure 1.5. 
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yjfc) 

72 (t) 

73 (t) 

y#'') 

Linear 

Algebraic 

Operator 

Si + N^Ct) 

Sg+NgCt) 

Sn + »n(t) 

N^(t) 

af(t) 

XgCt) 

•<> 

Generallzed 

^ (m-n) 
^ Dimensional 

Wiener 
Filter 

NgCt) 

\(t) 

Figure 1.5. Block diagram of multiple-Input 
Intuitive complementary filter. 

With reference to Figure 1.5, the symbols are: 

y\(t) = Linear combination of r signals corrupted 

by additive noise. 

+ N^(t) = One of the n signals corrupted by a linear 

combination of the m noises for the Inputs. 

N^(t) = Linear combination of the m noises from the 

Inputs, [Note N^(t) 4 N^(t)]. 

The above system is satisfactory for continuous-time systems. 

However, when the Inputs are discrete samples, the Kalman filter may be 
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used. The (m - n) dimensional Wiener filter is replaced with a Kalman 

filter. Benning works out examples for both the time-continuous Wiener 

filter and the discrete-data Kalman filter. 

Benning uses a linear algebraic operator to preprocess the measure­

ments. This has the disadvantage that if one of the measurements is 

not available, then there has to be a new algebraic operation and a 

different Wiener filter configuration. The same argument can be used 

for the discrete-data filter. Thus, if one allows for single failures, 

there have to be m backup systems to account for all the possible losses 

of measurements. Also, if a fail-safe system is considered, there have 

to be backup systems for all combinations of two, three, etc. failures. 

The total number of backup systems needed for a fail-safe complementary 

filter, denoted by B,is 

m-n-1 
B = Z (?) (1.28a) 

i=l ^ 

The summation only needs to be taken to (m - n - 1), since any 

number greater than this would not yield a complementary filter. The 

quantity (™) is the number of possible combinations of i elements out 

of m total elements. In the Wiener filter a large amount of wiring and 

interconnections would be required if m were very large. In the Kalman 

filter an additional algorithm and a large amount of memory would have 

to be used to accommodate all possible failures. Conservative numbers 

for m and n might be 6 and 3 respectively. This might be the case where 

the signals were the three positions with three redundant measurements. 
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Then 

B = (J) + (2) = 6 + 15 = 21 (1.28b) 

which is a fairly large number of backup systems. Finding some way to 

avoid the algebraic operator would help to alleviate this problem. If 

one were to operate on the measurements directly and then produce an 

optimal estimate of the signal with the complementary constraint, then 

this might be a workable solution to the problem of intermittent loss 

of measurements. 

Bakker (1) investigated this method by deriving the Kalman filter 

equations with the complementary constraint. That is, the inputs to the 

filter were the m measurements and the outputs of the filter were the 

optimal estimates of the signal in the least squares sense, and at the 

same time the estimates satisfied the complementary or distortionless 

constraints. 

A fairly detailed review of Bakker's work will be presented here 

since his results will be used in the next chapter. However, before 

proceeding, some partitioning of matrices and column vectors will be 

noted. Also, the time subscripts k will be omitted in the following 

equations in order to avoid confusion with the partitioned subscripts. 

All of the following equations are at time tj^ unless otherwise noted. 

The state variables can be partitioned as follows: 
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where Xg in the n-dimensional signal variable and is the (p-n) 

dimensional noise variable. The signal variables are those variables 

that are not to be distorted. 

The state transition matrix is partitioned in the following manner: 

d(t) = 

11 

nl 

i n+1,1 • 

pi 

. é. 
In 

. é 
nn 

. i 
n+l,n 

. i 
p,n 

l,n+l IP 

^n,n+l **' ^np 

n+l,n+l Vl,p 

^p,n+l " ^pp 

(1.30) 

In addition 

and 

K = [^s ^3] (1.31) 

(1.32) 

Bakker assumed that = 0 for all k, which means that the value 

of the noise vector at time t^ must not depend on the value of the 

signal vector at time t^^^. 

The measurement matrix can be partitioned as : 

M = 

•^1 
m 
In 

m 
ni 

m 
nn 

m 
l,n+l 

m 
Ip 

m 
n,n+l 

• • • m 
np 

= [Mg (1.33) 
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Next, the order identity matrix is partitioned. 

t(p) -
l(n) o(n,p-n) 

A 

Q(p-n,n) j(p-n) 

(1.34) 

The a priori estimate x' can be partitioned the same way as 

Equation 1.29. Then using Equations 1.29 through 1.34 the estimation 

Equation 1.5 can be written as: 

X* = [Ig - bMg] X' + [Ig - x; + b (1.35) 

If the "noise" vector and the measurement noises happen to be zero 

for all k, then the filter must yield a perfect estimate of the signal. 

This is known as the complementary constraint. That is 

*S ~ *S 
(1.36) 

Bakker (1) shows that this constraint can be satisfied by requiring 

that the estimate of the state vector be independent of the a priori 

estimate of the signal vector. It can be seen from Equation 1.35 that 

this condition is satisfied if 

[Ig - bMg] = 0 (1.37) 

and hence this is called the distortionless or con^lementary constraint. 

If the gain matrix b is partitioned between rows n and (n + 1) as 

'b„ 
b = 

N 

(1.38) 

then Equation 1.37 can be rewritten as the following two equations: 

"A = 
(1.39) 
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bjjMg = (1.40) 

The a priori and a posteriori covariance matrices can be partitioned 

similarly to the transition matrix 

P = 

P* = 

% 1 3̂" 

\ 

:i 
\ 

(1.41) 

(1.42) 

Bakker (1) determined the optimal gain matrix b which minimized 

the mean square error and at the same time satisfied the constaint 

Equations 1,38 through 1.40. He used the method of Lagrange multipliers 

* 
and derived the following Equation for b : 

*  r * T  -  *  T .  *  T  .  - 1 .  _  r  T  *  T  - i T i  
b = { P M + [Ig - P M (MP + V) ̂ gl[Mg(MP M + V) Mg ] 

, * T -1 
(MP M + V) 

* * 
Using the partitioned form of P and b Equation 1.43 can be 

(1.43) 

written as the following two equations: 

,T„ *,T 
bg = P*MJ(MPV + V)"l {l - Mg[Mg(MpV + V)"^Mg]"^Mg(MpV + V)"^ } 

-1 

+ [Mg(MP*M''̂  + V)"̂ g] "Hlg(MP*M̂  + V)"l 

b* - P^(MpV + V)'^ {I - Mg[Mg(MP*m""^ + V)"^ 

Mg(MP*M^ + V)'^} 

(1.44) 

(1.45) 
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An alternate form is : 

bg = + V)"l 

* * T * T -1 _ * _ 
\ = WW (1.47) 

(1.46) 

Equations 1.44 and 1.45 are equivalent to Equations 1.46 and 1.47 even 

though there is little resemblance. However, upon implementing this 

filter the latter two equations would probably be used instead of the 

previous two because they are generally simpler. 

Because of the constraints put on the Kalman filter the a posteriori 

covariance matrix will be of a different form than the usual Kalman 

filter equation: 

The computations for Bakker's distortionless filter are done in 

the same order that was suggested earlier in Section C for the Kalman 

filter, with the exception that Equations 1.46 and 1.47 are used instead 

of Equation 1.12 and Equation 1.48 is used in place of Equation 1.14. 

Upon examining Bakker's (1) equations for the complementary Kalman 

filter, one finds the computation and the amount of memory needed are 

generally greater than in Benning's approach since Bakker's approach 

has a larger number of states (both signal and noise) than Benning's 

(noise states only). Also, the gain matrices are much more complicated 

in Bakker's equations. Even though this is true, Bakker's approach 

might still be better to use if a fail-safe system is desired. Thus, 

(1.48) 

F. Objectives 
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it should be worthwhile to further investigate the Kalman filter equations 

with the complementary constraint in order to achieve a more efficient 

system in both confutation time and memory requirements. 

Bakker (1) suggested a method that would involve less computation 

time than the method outlined above and demonstrated it with a simple 

example. The idea is intuitively sound but was not proven. Bakker (1) 

suggested that the complementary constraint can be satisfied by requiring 

that the estimate of the state vector be independent of the a priori 

estimate of the signal vector, i.e., x be Independent of Xg. The 

elements along the major diagonal of P are the variances of the 

estimation errors. Similarly, the elements along the major diagonal 

* 
of P are the variances of the errors in the a priori estimates. 

Intuitively, it would seem that if one of these elements along the major 

diagonal were very large then the a priori estimate of that state would 

receive very little weight in determining the new estimate x. In the 

extreme case, if the variance was set to », it should receive no weight 

at all. The intuitive approach involves setting the variances of the 

a priori signal vectors to infinity and hence not entering into the 

determination of the new estimate x, which is precisely the complementary 

constraint. It should be noted that the optimal gain equation is simply 

the ordinary Kalman filter gain equation developed in Section C. The 

next chapter rests on the above discussion and shows that the Kalman 

filter with the complementary constraint can be obtained by simply taking 

the ordinary Kalman filter equations and setting the variances of the 

a priori signal vector equal to infinity. After the proof, an algorithm 
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will be developed that will be simpler than the normal Kalman filter 

algorithm because advantage can be taken of many zero terms. Then a 

comparison will be made between this approach and the method described 

by Benning (2), 

In Chapter IV the matrix differential equations for the Kalman-Bucy 

continuous-time filter with the conçlementary constraint will be developed, 

using a limiting argument similar to that employed by Sorenson (14). 

The last objective will be to apply the complementary Kalman filter 

equations to two integrated navigation systems problems. 
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II. DIRECT CCMPLEMENTARY KAUMAN FILTER 

A. Development of the Direct Complementary Kalman Filter 

It Is the purpose of this section to show that the normal Kalman 

filter equations can be altered to satisfy the complementary constraint. 

As mentioned in the previous chapter, intuitively, if one lets the 

a priori variances for the signal vectors approach infinity in the 

normal Kalman filter equations an optimal complementary Kalman filter 

is obtained. 

For brevity, the optimal complementary Kalman filter to be derived 

here will be referred to as the "direct" filter and Benning's (2) filter 

equations will be referred to as the "indirect" filter. Again, the 

time subscripts k will be omitted to avoid confusion with the partitioned 

subscripts. As before, the equations are assumed to be at time t^ 

unless otherwise specified. 

The normal optimal Kalman gain and a posteriori covariance 

equations are 

b* = + V)'^ (2.1) 

P = P* - b*(MP*M^ + V)b*^ (2.2) 

Upon substituting Equation 2.1 into Equation 2.2 it becomes 

P = P* - P*M^(MP*M^ + V)"HlP* (2.3) 

* 
If V and P are positive definite matrices, then the gain equation 

and a posteriori covariance matrix can be written in an alternate form 

as described by Sorenson (14). 

b* = (2.4) 
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P"^ = [P*"^ + (2.5) 

Again let F be partitioned as before 

n*T 
N 

(2.6) 

where Pg = the covariance matrix of the a priori signal variables, 

ic 
Pjj = the covariance matrix of the a priori noise 

variables, 

* 
Pg = the covariances among the a priori signal and 

noise variables. 

To apply the intuitive idea to the Kalman filter equation, let 

the variances of the a priori signal variables approach infinity, as 

described by the following equation 

P*= lim 
a -» 00 

a 0 0 

0 a 0 

0 

0 
(2.7) 

Also Pg will be set equal to zero. 

Then 

P*- lim 
a » 

a 0 ... 0 
0 a . * h 0 
# 
# 

0 .  . . .  a  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

o 

. O 4 
(2.8) 
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Equation 2.5 requires that the inverse of Equation 2.8 be found. It 

can be shown (See Appendix A), upon taking the limit as a -» P 

becomes 

p*-l = 
"o o' 

p*-l = 
f 

o
 

Then Equation 2 .5 becomes 

P'^ = 

'o o" 

P'^ = 

O 

(2.9) 

T -1 
+ M V M (2.10) 

Upon using the partitioned form of M, and after the indicated matrix 

multiplication is performed. Equation 2.10 becomes 

P"^ = 

1
 
-

J
 

1 

(2.11) 

In partitioned form 

P = 

and denote P ^ as 

_-l 

"p„ Po " s 3 

T 
P„ 

3 N 

(2.12) 

'A I B 

T ! ; c _ 

(2.13) 
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From properties of matrices, the product of a matrix times its inverse 

will be an identity matrix. Thus 

-1 
P P = 

B 

B 

Nj 

= I (2.14) 

+ BP^ = I 

AP3 + = 0 

+ CP^ = 0 

T 
B^Pg + = I 

After the indicated multiplication,Equation 2.14 can be written as the 

following four equations. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

If the complementary constraint is to be satisfied, the matrix is of 

rank r, where r represents the number of signal variables. Then the 

quantity M^V is an r x r matrix with rank r and is invertible. Also 

T -1 *-l 
assuming that (M^^V 4-P^ ) is invertible, the matrices A and C have an 

inverse. Using Equations 2.15 through 2.18 the following equations for 

Pg, Pjj, and P^ are obtained. 

(2.19a) 

(2.19b) 

(2.19c) 

Substituting the identities for A, B, and C, and after much matrix 

manipulation the following equations are obtained. 

Pg = [A - BC'^B^]"! 

Pjj = C'^ + c'VPgBC'^ 

P3 = -PgBC 
-1 
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'N = VX + V)'' - <VX + 

(2.20b) 

P3 = - [M^OyPX + «-"Mj] M^CVk̂  + V)-l (2.20c) 

The algebra between Equations 2,19 and 2.20 is not shown here 

because of its great length (See Appendix B). 

It will be shown that the direct filter described above is the 

optimal complementary filter. This will be proven by showing that 

Equations 2.20, which are the a posteriori covariance terms, are identical 

to Bakker's covariance terms. Thus, if both methods have identical 

covariance matrices, this means that the minimum mean square errors 

are identical. Since Bakker's (1) filter is optimal then the direct 

filter equation must be optimal, provided that the complementary 

constraint is satisfied in the direct filter. 

Bakker's (1) a posteriori covariance matrix is given by 

* . * 
P = (In - + b*#*? (2.21) 

Using the partitioned form of b , Equation 2.21 can be rewritten as 

P = 

"»>r 
(2 .22)  

After multiplying and collecting terms, F becomes 
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P = 

*, * T ^ *T wA+«V - >• A'N 

+ "IvX+'>'7 

4 - - *7 
+ \vX+ 

N 

(2.23) 

^ 'ic 
Upon inserting the expressions for bg and bj^ (Equations 1.45 and 1.46) 

into Equation 2.23, and after lengthy matrix maneuvers, the following 

expressions are obtained 

Pg = + V)-l (2.24a) 

"3 = - "s + ̂ >"VN 

(2.24b) 

(2.24c) 

As can be seen, upon comparison, Equations 2.20 and Equations 2.24, 

respectively, are identical. The algebra omitted between Equations 2.23 

and 2.24 is in Appendix C. 

To show that the direct filter does satisfy the complementary 

constraint, the following two identities must be satisfied 

bgMg = I (2.25) 

bj^g = 0 (2.26) 

Using Equation 2,4 and the partitioned forms of P, M, and b, we find 

that 
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'"s" 
T -1 

= PM V = 
% i "3" 

1 1 '
 

1 

v"^ 

1 

. 
J 

b = 

After multiplying. Equation 2.27 becomes 

'V 

r T -1 

w 

T -1 
+ w 

T T -1 T -1 

_v w + w 

First look at bgMg given by 

,T„-
" s ^ s  = W  " S  V 

Substituting for Pg, Equation 2.29 becomes 

Let 

W= (M^pJ^+V) 

Using this identity Equation 2.30 can be written as 

bgMg = PgMgV"Hlg - PgMgW"^(W-V)v"^Ig 

•S-S -

After multiplying and canceling terms, 

Vs = 

Note that 

Then Equation 2.32 is 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.32) 

(2.33) 

Vs = = : (2.34) 
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Secondly, b^Mg is given by 

Vs = (2-35) 

T 
Substituting for and and using Equation 2,31, Equation 2,35 can 

be written as 

Vs= •  

-  (2-36) 

if T 
Replacing M^jPj^ with (W-V) and further multiplication, Equation 2,36 

becomes 

Vs ' • 

+ <2.37) 

* T 
Canceling terms and factoring P^^ yields 

Vs '  W"'\ - ""Vs'§'"\] '2.38) 

Using Equation 2.33, 

Vs = ^ 0 <2.39) 

Thus, the direct filter satisfies the complementary constraint 

and has the identical a posteriori covariance matrix as Bakker's (1); 

therefore, the direct filter must be the optimal complementary filter. 

An alternate gain equation for the direct filter can be found by 

substitution of Equation 2,24 into Equation 2.28 and using Equation 2.31. 

Then bg is 
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"s = (2-4°) 

-1 
Substitution of Pg and W gives 

"s = 'XvX + <2.41) 

Similarly, 

T -1 * T -1 T -1 

"n " W - W "sW 

= - w'^MgPgMgW"^] (»-V)v'^ 

- WVs'" 

Multiplying terms results in 

* T -1 * T -1 * T -1 * T -1 T -1 
= PaMS* - + W + W MgPsMsV 

* T -1 T -1 * T -1 T -1 

- W \w • w "sW 
= pJ^W'^Cl - MsPsM^-l] (2.43) 

— 1 
Using Equation 2.40 and substituting for W 

"n- (2-44) 

At this time, the difference between Bakker's (1) equations and 

those of the direct approach will be noted. Assume that a particular 

estimation problem requires the use of the complementary constraint. 

First, a model of the system is found. The state equation, state 

transistion matrix,measurement matrix, etc., will be identical for 
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Bakker's (1) and the direct methods. The only difference will be the 

gain equation and the a priroi covariance matrix. The a priori matrix 

in Bakker's method is the same as the normal Kalman filter equations. 

The direct method requires an extra step, i.e., to set diagonal terms 

of Pg to infinity and to zero. However, this step will require 

very little computation time or computer memory. The other difference 

between the two methods are in the gain matrices. Upon comparing 

Bakker's Equations 1,45 and 1.46 with the normal Kalman filter gain 

matrix (Equation 1.12), note that the latter equation has the advantage. 

That is, one less inverse is required. The savings in the inversion 

is reason enough to prefer the normal Kalman equations. As quoted 

by Sorenson (14), 

"The inversion on a digital computer of a matrix of large 
dimension is undesirable for several reasons—the amount 
of storage cells that must be used, the time that is 
comsumed in obtaining the inverse, and the accuracy of 
the end result. Thus, if the inversion can be circumvented, 
it is advisable to do so." 

Therefore, the direct filter would probably be preferred over the method 

of Bakker (1). 

One must realize that the direct filter can not be implemented 

exactly as described above because the a priori signal variance terms 

can not be set equal to infinity. However, as Bakker pointed out these 

terms wouldn't have to be set equal to infinity, but would only have to 

be on the order of 10 to 100 times larger than the largest element in 

* 
the a priori P matrix. However, as will be shown in the next section 

the terms that are to be set equal to infinity can be circumvented to 

yield an exact solution. 
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B, An Algorithm for Sequential Processing 

in the Direct Kalman Filter 

The purpose of this section is to develop an algorithm for the 

direct complementary filter, which will be derived so as to circumvent 

the infinite terms in the a priori covariance matrix. The use of the 

normal Kalman filter gain equation produces a savings in computation 

time and conçuter memory over Bakker's (1) equations. Also, if at 

each sampling time t^, m statistically independent sources provide 

measurement data, then each measurement can be processed one at a time. 

This procedure is designated by the term sequential processing. The 

proof of the sequential processing procedure can be found in Sorenson (14), 

It is not apparent to the author if sequential processing can be 

used in Bakker's (1) equations, since Sorenson's (14) proof dealt 

specifically with the normal Kalman filter equations. However, it 

might be worth investigation by some interested person. 

The development of the algorithm with sequential processing proceeds 

in the following manner. Assume there are r state variables which are 

designated to be the signal variables. Furthermore, assume there are 

m independent measurements consisting of linear combinations of the 

r signal variables, each corrupted by additive noise and m > r. In 

the state equation there are r signal variables and n noise variables. 

The number of noise variables depends upon how the noises are modeled. 

A 
Assume at time t^ one has a priori estimates of the states x 

* 
and the associated covariance matrix P^. The direct complementary 

filter requires that, before processing the measurements at time t^. 
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the signal variances of be set to infinity as shown by 

P* = 

a 0 ... 0 

0 a ... 0 

. . . 0 

0 0 ... a 

c  
* 

(2.45) 

where a approaches infinity. 

In order to avoid confusion, the time subscript k will be omitted 

and all matrices will be valid at time t^ unless otherwise specified. 

Since the adgorithm being developed uses sequential processing, the 

matrices will be subscripted such as to indicate which measurement is 

being processed. For example, denotes the measurement matrix from 

the i^^ measurement and b^ denotes the gain matrix associated with the 

processing of the i^^ input. Furthermore, a second subscript will denote 

the partitioned form of that particular matrix. That is, M^g denotes 

the signal portion of the i^^ measurement matrix. The partitioned forms 

will be identical to those already used. 

Before proceeding to the development of the algorithm three useful 

matrix identities will be shown. 

Identity I. If is a symmetric matrix and 

bi = (2.46) 

then 
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(I - b^M^)R^(I - = (I - b^M^)R^ = R^(I - b^M^)? (2.4?) 

This can be shown by direct substitution of Equation 2,46 into the left 

side of Equation 2,47. That is, 

(I - b^M^)R.(I - b^M.)T = 

"i - - V>A«Ï)"VE, 

+ R^M[ " V R^ 

= (I - b.Mj^)R^ = R^(I - (2.48) 

Identity II. If R^ is a symmetric matrix and 

^(i+1) = (2.49) 

where 

and 

then 

R = I (2,50) 
o 

b = R (2.51) 

" (2-52) 

if and only if 

V(i-l) <2-53) 

This is shown by writing Equation 2,52 in terms of Equations 2,49 and 

2,50. That is, 

V(i-1)\ " ̂i^^ "^(i-l)^(i-iy'^(i-2)(^ "^(i-l)^(i-l)) "i 

(2.54) 
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Iterating Equation 2.54 to it becomes 

(I-b^M^)R^(I-b^M^/ .... 

(: -t(i-2)M(i-2))^(: -tci-iyMxi-i))'*! (:'55) 

Let 

Then 

C Mi(I ^))(I (2.56) 

^i^(i-l)"i ̂  CR^C^ = CC''^ (2.57) 

T 
Note that C is a column vector. Then the diagonal elements of CC are 

equal to the squares of the elements in C, Since the squares are all 

T 
positive numbers, then the only way CC = 0 is if and only if each 

element in C is equal to 0. Upon using Identity I, C is simply 

C - (2.58) 

Thus, M.R,. .= 0 if and only if M.R,, .. = 0 
1 (i-l) 1 i (i-1) 

Identity III. If is a symmetric matrix and 

Mia(i.l) - 0 (2.59) 

then 

and 

"(i-D^Î = ° (Z-GO) 

(I - (I = (2.61) 
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Since = 0 its transpose is also equal to zero. That is. 

(2.62) 

Then multiplying out Equation 2.61 and using Equations 2.59 and 2.6 0 

vT 
(I - - b^M^) 

° "(1-1) " ° "(i-l) 
(2.63) 

We are now in a position to develop the algorithm. Equation 2.45 

can be written as the sum of two matrices. 

* 
P = 

(r X r) I (r x n) 

O [O 
(n X r) I * (n x n) 

O Î 

+ a 

(r X r) I (r x n) 

(n X r) } (n X n) 

O iC 

where a is very large. 

The gain matrix for the first measurement is 

(2.64) 

+ V)'^ 

* 
Note that (M^P + V) is a scalar so bj^ can be written as 

(2.65) 

4 
(MIP*MJ + V) 

(2.66) 

Using Equation 2.59 and the partitioned form of 
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1
 

o
 

o
 i 

Xs" 
"i ; o" 

1 
K1 

— — — "  — -  — - + a — — — 

1 
o
 

<N_ 
0 \ 0 

4N_ 

0 1 0 
_ 1 __ 4 
olp* U 1 r 

I !o 
1 

--r-

o i o  
_<N 

(2.67) 

+ V, 

Carrying out the multiplication. Equation 2.67 becomes 

••1 = 

\ + vXN 

(2.68) 

Note that M^gM^g ^0, then choose a such that aM^gM^g » 

Then becomes 

h = 

M: IS 

vis 
(2.69) 

IS 

IN 

To update the a priori covariance matrix the following expression is 

needed. 

^ " ̂IS^IS i " ̂IS^S 

Ô ! i"" 
(I - b^M^) = 

(2.70) 
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Upon using Equations 2.63 and 2.71, the a posteriori covariance matrix is 

" - "lAs) 

1 
O

 
1 

L
 

„„ 
1 1 

o
 

' 
1 

I 
O
 

j 

« - i 0 
-I-

"isVis 
+ a 

T T • ' 

" IS • ^ 

(I - b^gM^g)(I - bigM^g) 

0 

(2.71) 

after further multiplication and collection of terms, becomes 

* T 
^IS^^sVlS Vl)bis • ̂IS^S^N 

N -» 

Let 

+ a 

Qi = 

« - ! 0 
1 

0 

1 
1 
1 0 

i -

vXs i < 

(2.72) 

(2.73) 

and 

^1 = 

0 

(2.74) 
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Using Identity I. Equation 2,75 reduces to 

R. 

Then can be written as 

» • "is^is 

f o
 

O
 

1 \ 

o
 

(2.75) 

Pi = Ql + aR^ (2.76) 

The estimates of the states can be updated by Equation 1.13. The 

extrapolation of the states and covariance matrix will not be necessary 

since At = 0. This requires that d(t) = I and H(t) =0. Thus, the 

second input is ready to be processed and the gain matrix b^ using 

Equation 2,77 as the a priori covariance matrix is 

bg = (Q^b^ + aR^f^) + aM^R^M^ + Vg)"! (2.77) 

Again the quantity under the inverse is a scalar, so bg can be 

written as 

^2 = 

T T 

(2.78) 

T T 
If R^Mg = 0, then = 0 and can be written as 

b. = 

T 

2 + Vj) 
(2.79) 

and thus 
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Pg = Qi - + vybg + a(I -

= Q^ - bgCMgQ^Mg + V)h\ + aR^ (2.80) 

by use of Identity III. The remaining steps in the Kalman filter 

equations are as normal. 

If 4 0, then W 0 by Identity II. Then choose a 

such that 

+ Vj (2.81) 

then bg becomes 

b2 = 
h4 

vA 
(2 .82)  

In partitioned form this can be written as 

h ' 

hAs 
F 

IS 2s 
(2.83) 

The covariance matrix is 

' ' 2 = ( ^ - W I"-''2«2)''+V2''2 

+ a(I - b2M2)R^(I - bgMg) (2.84) 

Define 

and 

Qg = (I - 1'2M2)Qi(I - bgMg)^ + bgVgb? 

Kg = (I - ̂ 2^2^^!^^ - = (I -

(2.85) 

(2.86) 
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by Identity II; hence 

=2 = *2 + '^2 

The third step or the i"' step can be calculated as before, 

gain matrix is 

-.th 

(2.87) 

The 

\ = 

+"i 

(2.88) 

Again, if = 0 then 

T 

(2.89) 

and 

= "i-l - "iWi"!-!"! + Vi)»! + **1-1 (2.90) 

If R -mT 4 0 then, M.R. -m'F 4 0, hence 
i-1 X 1 1-1 1 

T 
*i-l*i 

\ = "i^i-l^i 

and 

(2.91) 

?! = (I - - ''iV + a(I - b.M.)R^_^ (2.92) 
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One would expect that = 0 after there are enough measurements 

to give an estimate of all the signal variables. Then estimates of 

the variables would be obtained since the remaining measurements would 

be redundant information. For example, this can be shown by processing 

r inputs at once. Assume the first r measurements are such that the 

rows of Mg are n linear Independent combinations of the r signal 

variables. Then Mg is an invertable matrix. The gain matrix is 

aM, 

+ vr' (2.93) 

Factoring — , 

" l ' a  

( 

* T 

* T 
-1 

(2.94) 

Taking the limit as a -• » bj^ is 

h = 

M 

Then 

(I - b^M^) = 

The confutation of is 

' " i - 1 

-~T-\ 

(2.95) 

(2.96) 

\ - h"i> [-jfoil " • "A'' " ['o l"o'] 
(2.97) 
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Thus, after r linearly independent measurements are processed R = 0 and 

becomes finite. Then one can use the normal Kalman Equations to 

process the remaining inputs. 

After all the measurements at time t^ have been processed, we need 

to extrapolate the a posteriori covariance matrix The calculation 

of Pg and Pg are not needed because they will be changed to accommodate 

* 
the complementary constraint. Then is 

C i  " + »  (2.98) 

Using the partitioned form of Equation 2.89 becomes 

k+1 

•SsVs + ^3^3^ + 

+ + «s *^3 VN ^2 

WÏ + + '4Y3 

+ W3+"3 

(2.99) 

The only term that needs to be retained is P^ which is 

(2.100) 

If = 0 as indicated by Bakker (1) then 

k+1 

0 

0 
^N^N^NJ 

(2.101) 
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The a priori states estimate is 

dgïs + «'sÏN 

Again if = 0, then 

(2.101) 

X I _ 
k+1 

"•sïs * 4% 
r M  CO 1 

1 1 
• 

1 
<
 

1 

—
I
 

(2.102) 

However, if no weight is to be placed on the a priori signal terms 

the Xg does not need to be calculated either and it can be arbitrarily 

set to zero. 

The algorithm of the direct filter with sequential processing is 

now given. Assume at time t^ that and are given, then the 

recommended procedure is : 

1. Let ^ = I, where I is the identity matrix 

2. Increment i starting with i = 1 until i = number of inputs, 

then go to step 14. 

3. If R^_= 0, go to step 9; otherwise 

T 
compute if = 0, go to step 9; otherwise go to step 4. 

4. Calculate the gain matrix given by 

"1 = 

"iS^i-l^S 

0 

5, Update the estimates by 

b 
A A J, 

[•t] <*1 -
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6. Calculate the a posteriori covariance matrix by 

Pj = (I -

7. Compute given by 

h- "-h^is>h-i 

8. Go to step 2. 

9, Calculate the gain matrix by 

b. = 
'i-ii 

+V 

10. Update the states by 

"i " vi + - "A-P 

11. Confute the a posteriori covariance matrix by 

\ = ^-1 - + Vi)»! 

12. Let • 

13. Go to step 2. 

14. Extrapolate the estimate of the states ahead by 

^ = -'À 

15. Extrapolate the a posteriori covariance matrix to give the 

a priori covariance matrix by 
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If the above algorithm is used, an optimal estimate of the signals 

in the least squares sense is obtained. Also the estimate of the signals 

will satisfy the complementary constraint. The method described above 

does not require any matrix inversions, which in a large scale problem 

can amount to an appreciable time savings. Also note that the modeling 

of the signal variables is not critical since the matrix is not 

needed. Hence, the signal can be modeled any way that is desired. A 

look at some possible applications and uses for the above filters will 

be presented in Chapter IV, 
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III. LINEAR ESTIMATim FOR TIME-CCOTINUOUS SYSTEMS 
WITH THE COMPLEMENTARY CONSTRAINT 

The development of the complementary filter in Chapter II dealt with 

the discrete data input system. The purpose of this chapter is to con­

sider the case where the inputs are continuous functions of time. The 

development of a Kalman-Bucy complementary filter is presented in this 

chapter. This is accomplished by a limiting technique similar to that 

employed by Sorenson (14). That is, the discrete time complementary 

Kalman filter equations are used and At is allowed to go to zero. 

The development will produce a set of matrix differential equations. 

The solutions of these equations are not presented here, because they 

can be found in Reid (13). The differential equation will be presented 

in a block diagram to suggest a means of implementing the Kalman-Bucy 

complementary filter. 

The filter equations for the discrete-time distortionless constraint 

are as follows. The gain matrix is 

(3.1) 

where 

"sk = V" 

 ̂- 44 VNk4k+ V ''[I - "skV (3-3) (3.3) 

The a posteriori covariance matrix is 

Pk - (: - (3.4) 
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The estimation equation is 

A A. n A. 
(3.5) 

where 

A 
,x. 

k k,k-l k-1 

Upon using the constraint as derived by Bakker (1) 

Vsy.'° 

Equation 3.4 becomes in partitioned form 

(3.6) 

(3.7) 

(3.8) 

^Sk 1^3kl 
1 
1 

pT 
1 
1 

_ 3k 1 Nk 

+ \>4 

* T T 

^Nk^^Sk 

+ \>C 

" ̂ Sk&k^m 

* * T T 
^Nk " ̂ Nk^^ 

' ̂nk&k^Nk 

+ 'Sa<vl'^k*k>'i 

(3.9) 

Equation 3.5 becomes in partitioned form 

A 

Sk 

A 

L^Nk. 

" ̂ Sk^^Nk ^Sk^^k^ 
(3.10) 

Equations 3.1 to 3.10 for the discrete-time models can be used to 

derive the Kalman filter for the time-continuous systems and measure­

ment process with the distortionless constraint. This is accomplished 
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with a limiting argument employed by Sorenson (14). Before the limiting 

argument the white noise sequences will be replaced with white noise 

processes. 

Consider a dynamical system described by a linear, vector differential 

equation 

^ = A(t)x + G(t)UJ(t) (3.11) 

Let W(t) be a gaussian white noise process with moments prescribed as 

E[w(C)] = 0 for all t (3.12) 

E[w(t)uF(t)] = Q(t)Ô(t - T) for all t, T (3.13) 

The Q(t) is a symmetric, non-negative-definite matrix and 6(t - T) 

represents the Dirac delta function. 

The measurement model is assumed to be 

y(t) = M(t)x(t) + v(t) (3.14) 

where v(t) is a gaussian white noise process with moments prescribed as 

E[v(t)l = 0 for all t (3.15) 

E[v(t)v^(t)] = V(t)6(t - T) for all t, T (3.16) 

The continuous Kalman filter with the distortionless constraint 

can be obtained from Equations 3.1 through 3.10 by letting At -* 0. 

However, fundamental differences exist between white noise processes 

and white noise sequences. These differences will be accounted for 

before introducing the limiting argument. 

The covariance of the random sequence Vj^ has been defined as 
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E[vj^vp = for all k, j (3.17) 

If the time interval At between adjacent sampling times is permitted to 

become arbitrarily small, the noise will contain no power. That is. 

lim 2 V, 6, .At = 0 (3.18) 
n ^ m  j = l  J  

At o 

In other words for arbitrarily small At there is no noise in the 

measurement so the estimate problem is uninteresting. 

To circumvent this difficulty, introduce the constraint that 

eCvĵ vT] At = for all k, j (3.19) 

for any sampling interval At and a prescribed matrix v^. With this 

restriction it is apparent that 

^ T 
lim E E[V, vj At = V (3.20) 

n - 00 j=i J * 

At ̂  o 

The constraint in Equation 3.19 is equivalent to requiring that the 

noise sequences and {v^} be replaced by 

\ ^k 
and 

% % 
(àty (At) 

where ui and v. are as described before. In other words, in Equations 

3.11 and 3.14 replace v^ and U)j^ with ^ and ^ respectively. 
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Consider the dynamical system 

\,k-lVl \,k-l 

and the measurement process 

Vk 
fk = Mk*k + (3.22) 
k k k (AtyS 

Now is the state transistion matrix and can be expanded as 

•^k.k-l = ^ + A(tk_i)6t + 0(At) (3.23) 

where 0(At) denotes terms of greater than first order in At. 

Also, 6^ can be written as 

\,k-l = G(tk_i)At + 0(At) (3.24) 

Now using Equations 3.23 and 3.24 in Equation 3.21 and rearranging terms. 

\ "t-l 0(it) 
= A(Ck.l)Xk.l + G(tk.i) —Î + -T (3-25) 

it » i ^ K-i it 

Now define the processes v(t) and U)(t) such that 

T- for tfc.i - - -k 
1 

v(t) = T- for t , 3 t < t, (3.26) 

(At) 

w(t) = -ç- for t^^i ̂  t < tj^ (3.27) 
(At) 

and let 

lim = 6(t -T) (3.28) 

At -• o At 
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Letting ût -» o in Equation 3.25, Equation 3.11 is obtained and letting 

At ̂  o in Equation 3,22, Equation 3.14 is obtained. 

Now we are in a position to derive the Kalman filter equations. 

The extrapolated error covariance matrix for the modified noise sequence 

is 

\ ̂ ̂ k,k-l^k-A,k-l "*• \,k-l ^k,k-l (3.29) 

Substituting Equations 3.23 and 3.24 this becomes 

\ ̂k-1 A(tk_i)Pk_iAC + ̂ k-1^ 

+ + 0(AC) 

In partitioned form this becomes 

* * 
p , P p p 
Sk 3k Sk-1 3k-l 

*T * pT 
3k ^Nk 3k-l ^Nk-1 

(3.30) 

^S^\-l^^Sk-l^^ ^3(^k-1^^3k-l^^ 

^3k-1^3 (*T(-lAt 

Aj,(tk_i)P3k_iAt + P3k_iAg(tk_i)At 

^Nk-1^3 

®Sk-l\-l®Sk-l^^ 

®Nk-l\-l®Sk-l^^ 

^3k-l*N(^n-l)At 

*N(tk-l)^Nk-lAt + ̂ Nk-l\^^-l^^' 

®Sk-l\-l®Nk-l^*^ 

®Nk-l\-l®Nk-l^^ 

+ 0(At) 

(3.31) 
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Now this can be written as three equations 

^Sk ~ ̂ Sk-1 *s(^k-l)^Sk-lAC + 

+ G%k-lQk_iG]:k_iAt + 0(At) (3.32a) 

^3k ^3k-l Ag(Ck_i)P3k_iAt + A3(tj^_^)Pj^_iAt 

^Sk-l^N^tk-l^At + ®Sk-l\-l^Nk-l^^ °(Ac) (3.32b) 

^Nk ~ ̂ Nk-1 ^Nk-l^N^^k-1^^^ 

+ GRk-lOk-lGSk-lAt + 0(At) (3'3:c) 

Now look at 

^Sk-1 ° JT^ ''sk-lOSnc-l''Nk-l'4-l 

+ ̂  >4-1 = -

* 
Thus Pg = Pg = œ 

Taking the limit of P3^_^ as At -• 0 yields 

IT"°o 'SK-I ° + ZR ̂ *^-1 

ït m 

" ̂ Sk-l%c-l^Nk-l 
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At ̂  o 
* 

" ̂ Sk-l&k-l^Nk-l ̂ 

Determine the following limits; 

Urn = H (3.34) 

At -• o 

"•» = "Si ».35) 
At -» o 

lira BL. 1 = 0 (3.36) 

St - o 

Using Equation 3.34 and 3.35 then lim P_, ^ becomes 
At - o ^ 

llm (3-37) 
At ^ o 

Therefore, 

lim P* = Pt(t) = - [Mq(t)v(t) ̂ q(t)l ^. 
At - o 3 S S 

M^(t)v(t)"\(t)P*(t) (3.38) 

Using Equation 3.9 and 3.32c, and rearranging terms 

* * 

^Nk " Nk-1 ^-1 ^ „ ^k-1 

(%(-l^Nk-l^Nk-l ^ %c-l 
At At At 

T 

* y %(-l %-l * 

" ̂ Nk-1^-1 TI ~~ ̂Nk-l^Nk-1 \^\-l^^Nk-l 
At At 

T, T 0(At) 

^Nk-l\^\-l^ ®Nk-l\-l®Nk-l 
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p* - p* 
Nk Nk-1 

lim 
At -• o 

- y ' 

At 

dp. 
N 

dt 
(3.40) 

Equation 3.35 can be rewritten as 

% = 0-41) 

Now using this then 

- V'\<V-"ms)"XV"^] 
dP, 

dt 
- = A«(t)p;+p^ct) 

(3.42) 

This equation has the form of a matrix Ricatti equation and shall be 

discussed below. 

The estimate Equation 3.10 for the signal variables is 

A .... A 

*Sk " ̂ Sk^*Nk ^Nk^ 
(3.43) 

L^Ll 

^k,k-l \-l 

^Sk,k-1 *^3k,k-l 

0 
"^Nk.k-l 

Sk-1 

A 

*Nk-l 

(3.44) 

So 

4k - dWk.k-l ̂ -1 ' »Nk-l + + "»'> (3-45) 
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Using Equation 3.45 in Equation 3.43 it becomes 

*Sk ^Sk^*Nk-l " 

+ KgkCYk) + 0(^t) (3.46) 

lim = K^(C) - = K'[y(t) - %] (3.47) 

At -* o 

*Nk " ̂ &k^^Nk-l * 

+ + 0(6t) (3.48) 

Upon rearranging terms and taking the limit 

= A^(C)^ + KjJ(t)[y(t) - Mjj(t)Xjj] (3.49) 

The fact that Pg = « makes sense because of the distortionless 

constraint. The distortionless constraint says to ignore the a priori 

statistic of the signal variables and hence, are not used in the gain 

equation or estimation equations. 

A summary of the Kalman filter equation for the time-continuous 

filter with the distortionless constraint follows, 

1« The covariance differential equation matrix is 

dP_ 

dt~ " 

+ (3-5°) 
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2. The gain equations are 

K;(t) = CM,(t)v(t)"^^(t)]"^^(t)v(t)"^ 

K^(t) = P^(t)[v(t) ̂  - v(t) ̂ g(t) 

(M^(t)v(t))"^g(t)v(t)"^] (3.51) 

3. The estimate equations are 

Xg = K^(t)[y(t) - M^(t)Xjjl (3.52) 

dx. 
(3.53) 

In block diagram form the filter is shown in Figure 3.1. 

y(t) 

Figure 3,1, Block diagram of continuous 
complementary Kalman filter. 

This completes the development of the continuous complementary 

filter. Before the filter can be implemented a solution must be found 

for the matrix differential Equation 3.50 through 3.53, The solutions 

are not shown here, but can be found in Reid (13). 
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IV. APPLICATIONS AND CffllPARISON EFFORT INVOLVED 
IN THE DIRECT AND INDIRECT METHODS OF 
IMPLEMENTARY THE COMPLEMENTARY CONSTRAINT 

A. Applications of Complementary Filters 

The purpose of this section is to suggest some practical applications 

for the direct filter. The motivation for this thesis was to devise a 

totally integrated inertial navigation system. However, the author does 

not suggest that the direct method will solve all navigation problems. 

There have been certain restrictions and assumptions made that do not 

fit every navigation system. The direct filter yields a more complete 

integrated system than has been developed so far and in certain cases is 

even easier to implement than the methods proposed to date. 

As far as a totally integrated inertial navigation system is 

concerned this thesis only considers the case where the complementary 

constraint is needed. This, in the author's viewpoint, is the area that 

needs to be explored. If one knows the statistics of the signal then 

the Kalman filter can be used to estimate the values of the signals. 

If the measurements are linearly independent then the inputs can be 

processed sequentially. Upon input failure or unavailability of inputs, 

the Kalman filter can merely omit these measurements and proceed with 

the remaining measurements. That is precisely the purpose of this thesis ; 

to be able to sequentially process the measurements, such that if there 

is an input failure a backup system is not required. In Chapter II an 

algorithm was developed that precisely accomplishes this task. The 

inputs can be processed sequentially, and the result is an optimal 

estimation of the signal variables in the least squares sense with the 
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complementary constraint. 

The complementary constraint is used in virtually all terrestrial 

navigation systems, as pointed out by Brock and Schmidt (4). The reason 

is the statistics of the signal are not known well enough or are 

virtually impossible to describe mathematically. Also, in many cases 

where the statistics are known the complementary constraint does not 

degrade the performance appreciably as pointed out by Brock and Schmidt (4). 

Huddle (10) described a navigation system that is typical of many 

systems today. He estimated position and velocity using an Inertial 

navigation unit, doppler radar, Loran system and star tracker. He then 

considered the following modes of operation: free-inertial navigation 

mode, doppler inertial navigation mode, Loran-inertial navigation mode, 

and astro-inertial navigation mode. In the free-inertial mode. Huddle 

indicated that the errors grow with time. To keep the errors bounded and 

for a better estimate of the signals, aiding sources were used. Actual 

flight tests were made of the above mentioned modes and detailed error 

curves were plotted for each flight and mode. It would seem, however, 

that the best estimates of the signal would be obtained if all aiding 

sources were used at once instead of using the different modes. The 

reason all aiding sources are not used is the fact that they are not 

available at all times. For example, the Loran system only works if 

the vechlcle is in range of Loran ground stations. The star tracker 

only works at night. The doppler radar may not work effectively over 

water. However, the direct filter as Implemented In Chapter II, will 

allow one to use all the aiding sources that are available. This even 
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allows for a failure in the inertial navigation system, which most 

systems propossed to date do not allow. 

Another possible advantage might involve the case of spurious 

errors in the measurements, when a check can be made on the inputs to 

determine if they are acceptable or not. One way vould be to compare 

the measurement y^ with by the equation (y^ - ^ F(t), where 

F(t) is the maximum bound to be placed on the difference. From the 

dynamics of the system there will have to be an upper bound on this 

difference. For example, at time t^ assume y^ = + ngCt) where 

is a velocity variable. From the previous data we have an a priori 

estimate of the velocity at time t^. If the vehicle is an aircraft, 

it is obvious that it can only accelerate or deaccelerate at a maximum 

rate. Thus, the difference must lie within certain bounds. Figure 4.1 

demonstrates this idea. 

velocity 

maximum bounds 

k-1 
extrapolate velocity 

Figure 4,1. Bounds on velocity variables. 

If the measurement at time t^ lies outside these bounds, then that 

measurement will be ignored. Since it processes all inputs sequentially 

ignoring an input does not affect the direct filter. Gaines (9) used 

a chi square test to protect the system from faulty measurements. The 

author does not suggest any one method, but indicates that the tests 

will be the same, for the direct and indirect filter and failure 
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detection schemes will not be presented further. 

Another advantage for the direct filter is the case where the 

statistics of the signal might be known only part of the time or where 

the statistics change drastically at some time. It is a trivial matter 

to change the normal Kalman filter equations to the direct filter, by 

just setting the a priori signal variance terms to a large number. This 

would involve no algorithm change with a mimimal amount of additional 

processing time. If the algorithm in Chapter II were being used, to 

switch from the complementary filter to the coventional Kalman filter 

would be accomplished by omitting steps 1 through 7, 

A disadvantage of the direct filter is the fact that a larger number 

of states are involved, i.e., the direct filter models both signal and 

noise states while the filters to date model only estimate noise. Therefore 

larger matrices are involved in the direct filter. However, the next 

section indicates that computation time may be shorter if there are a 

large number of redundant measurements. 

B. Computational Comparison of Direct to Indirect Filters 

Based on the assumption that a better estimate of signals can be 

made if all aiding sources are used, computation time will be investigated, 

linger and Ott (15) demonstrated that considerable improvement in accuracy 

can be obtained by using all additional redundant information as compared 

to pure inertial modes. Therefore, a comparison will be made between 

the direct filter and the conventional filter using all redundant 

information. Benning (2) introduced the general complementary filter 

which would be typical of most filter schemes to date as far as 
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determining computational time. Benning's (2) method was described in 

Chapter I and referred to as the indirect filter. The indirect filter 

is shown in Figure 4.2. 

Linear 

^2"~^ Algebraic 

Operator 

'm 

+ Nj^(t) 

Sg + NgCt) 

+ N^(t) 

N(3)(t) 

N(»-r)t 

Kalman 

Filter 

(m-r) 

Dimension 

N,(t) 

N^(t) 

7  ̂
s' 
r 

Figure 4.2. Block diagram of indirect filter. 

The (m-r) dimensional Kalman filter operates on the (m-r) linear com­

binations of the noises to give the optimal estimate of N^(t). In the 

indirect filter, if one input fails or is not available the filter has 

to be changed to accommodate the remaining inputs, thus, requiring a 

backup system. If all possible combinations of errors are considered the 

number of backup systems required is given by Equation 4.1, which was 

derived in Chapter I. 

(m-r+1) 
B = 2 (5 

i=l 1 
(4.1) 

As indicated in Chapter I, B can be very large in a system with a 
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large amount of redundancy. Instead of having backup systems for each 

case an alternate method would be to have an additional algorithm to 

recompute the algebraic operator and modify the Kalman filter when a 

failure occurred. The remaining inputs y^(t) would be solved to yield 

r equations of the form S^+ N^(t) and (m-r-1) equations consisting of 

linear combinations of noise. 

A comparison between the indirect and direct filter computation 

time and computer memory will be made. A good con^arison of the computa­

tional times involved is the number of multiplies required. Multiplies 

are usually an order of magnitude higher than simple additions. For 

example, the computer in Gaines's (9) paper has a speed of 24 |j,sec for 

a multiply and 4 p,sec for an addition with a word size of 20 bits. Thus, 

we will examine numbers of multiplies that are required for the direct 

filter and the indirect filter. The signal states will depend on what 

types of quantities are desired to be estimated, i.e., position; velocity; 

attitude; pitch; roll; etc. The characteristics of the measurement noises 

will determine the number of noise state that are needed. That is, if 

the measurement noise is white, there will be no noise vector. However, 

if it is something other than white, in order to model it for our Kalman 

filter, we will have to think of it as an output of some shaping filter 

driven by white noise. Thus, we will have noise states the number of 

which depends on the characteristics of the shaping filter. 

Let's consider the general case, where we have: 

R signal variables, i.e., the number of variables that are 

to be estimated. 
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G noise variables 

P measurements of the signal variables 

Therefore, the filter will have R + G states in the direct filter and G 

states in the indirect filter. The equations for the number of multiplies 

for the direct filter is 

Mjj = 3R^ - - R - 3RG + 4R^G+ ZR^cf - 4R^G - 2RG^ 

+ 2G^ + G^ + P(2R^ + 4RG + 2G^ + 4R + 4G) (4.2) 

The equation for the number of multiplies for the indirect filter is 

+ 2(P-R)(G^ + G) + 2G(P - R)^ + 2(P - R)^ 

+ RG + 2G^ + G^ (4.3) 

Equation 4.3 includes multiplies needed in order to make a fail-safe 

system. For brevity, the derivation is given in Appendix D. 

Upon examining Equations 4.2 and 4.3 we find that the difference will 

be small, if R is small, P is large, and G is large. This is intuitively sound 

because the direct filter operates on the R + G variables and the indirect 

operates on G. The indirect must also take an inverse in its algorithm. 

If the noise states were large compared with the signal states, the 

indirect approach would take longer; and if P were large, this would make 

the noise states greater. Therefore, a look at the percentage increase 

of the direct filter over the indirect will be examined. This percentage 

will be denoted by and is 

(M_ - M_) X 100 
n = -2 -Î (4.4) 
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Tables 1 through 8 list the percentage increase in multiplies for values 

of R from 1 to 8 and various values of G and P. Note values of P less 

than R are not listed, because it would then be impossible to have the 

conqjlementary constraint. For constant values of G and R, and as P 

increased the percentages went negative. This means that as P becomes 

larger the direct filters computation time is shorter than the indirect 

filter. 

In conclusion, if a fail-safe system using the complementary filter 

is desired, several factors must be considered. If many noise states 

and much redundant information exist, the designer must decide which type 

of filter mechanization will be used. The direct filter may require more 

computation time, but less memory allocation than the indirect filter. 

However, if there are a large number of redundant states and many noise 

variables compared to the signal states the computation time may even 

be smaller than the indirect filter. The percentage increase of the 

memory requirement of the indirect filter over the direct filter is also 

shown in Tables 1 through 8, Note, that the indirect filter generally 

requires more memory than the direct filter because of the matrices needed 

in order to be fail-safe. The percentage tends to increase as the 

redundancy increases. 

In conclusion, if a fail-safe system using the complementary 

constraint is desired, several factors must be considered. The direct 

filter generally requires more computation time, but less memory require­

ments than the indirect filter. As indicated by Gaines (9), computation 
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time is not the critical factor in Kalman filter mechanization, but it is 

usually the computer size that places the restriction on the mechanization. 

However, if there are a large number of redundant states the computation 

time of the direct filter may even be smaller. Then the direct filter would 

be superior to the indirect filter. The next chapter will present two 

examples demonstrating the direct and indirect filters. 
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Table 4.1. Percentage increase in multiplias of direct over indirect methods 
and percentage increase in computor memory of indirect over 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 
Bottom numbers = Percentage increases in computer memory 

G = Number of noise states 

XXX = Number greater than 1000% 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 240 106 8 -60 
-55 10 72 145 

2 95 70 20 -21 
-39 3 45 96 

3 53 48 22 -6 
-29 0 31 68 

4 36 35 20 0 -21 
-23 -1 22 50 82 

5 27 27 18 4 -12 
-19 -2 17 39 65 

6 21 22 15 5 -6 
-16 -2 14 32 53 

7 17 18 14 6 -3 
-14 -2 11 26 44 

8 15 15 12 6 -1 
-12 -2 9 22 37 

9 13 13 11 6 0 -7 
-11 -2 8 19 32 47 

10 11 12 10 6 1 -5 
-10 -2 7 17 28 41 

11 10 10 9 6 1 -3 
-9 -2 6 15 25 36 

1 12 9 9 8 6 2 -2 
-8 -2 5 13 23 33 
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Table 4.2, Percentage increase in multiplies of direct over indirect methods 
and percentage increase in computer memory of indirect over 
direct methods for (value of R) signal variables 

Top numbers - Percentage Increase in multiplies 
Bottom numbers = Percentage increases in computer memory 
6 = Number of noise states 

XXX = Number greater than 1000% 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 

2 1 999 559 230 79 8 -41 
-42 0 41 90 144 203 

2 2 578 366 197 90 27 -12 
-37 -4 28 66 108 154 

2 3 320 242 158 88 38 2 -27 
-31 -5 20 49 83 119 158 

2 4 206 172 126 81 42 12 -11 
-26 -6 15 38 65 95 126 

2 5 147 129 102 72 43 18 -2 
-22 -6 11 31 53 77 103 

2 6 112 102 85 64 42 22 4 -12 
-19 -5 9 25 44 64 86 109 

2 7 90 84 72 57 40 23 8 -5 
-17 -5 7 21 37 54 73 93 

2 8 75 71 62 51 38 24 11 -1 
-15 -5 6 18 32 47 63 81 

2 9 64 61 55 46 35 24 13 2 -8 
-14 -5 5 16 28 41 55 70 87 

2 10 55 53 49 42 33 24 14 4 -4 
-13 -4 4 14 24 36 49 62 77 

2 11 49 47 44 38 31 23 15 6 -1 
-12 -4 4 12 22 32 44 56 69 

2 12 44 42 39 35 29 22 15 7 0 
-11 -4 3 11 19 29 39 50 62 
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Table 4.3. Percentage Increase in multiplies of direct over indirect methods 
and percentage increase in computer memory of indirect over 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 
Bottom numbers = Percentage increases in computer memory 
G = Number of noise states 
XXX = Number greater than 1000% 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

3 1 999 999 742 359 171 73 17 -19 
-33 -3 26 61 101 145 191 240 

3 2 999 999 607 339 184 93 37 1 -29 
-32 -6 18 47 80 116 154 194 237 

3 3 962 697 469 298 182 104 52 16 -10 
-30 -8 13 37 64 94 125 159 194 

3 4 614 487 363 255 171 107 61 27 2 -19 
-27 -8 10 30 52 77 104 132 161 192 

3 5 429 361 287 217 156 106 66 36 12 -7 
-24 -8 7 24 43 64 87 111 136 163 

3 6 321 280 233 186 141 102 69 41 19 1 
-21 -8 5 20 36 55 74 95 116 139 

3 7 252 226 194 161 127 96 69 45 25 7 
-19 -8 4 17 31 47 64 82 101 121 

3 8 206 188 165 141 115 90 67 47 29 13 
-17 -7 3 14 27 41 56 71 88 106 

3 9 172 160 143 125 105 85 65 47 31 17 
-16 -7 2 12 24 36 49 63 78 94 

3 10 148 138 126 111 95 79 63 47 33 20 

-15 -6 2 11 21 32 44 56 70 84 

3 11 129 122 122 100 88 74 60 47 34 22 
-14 -6 1 10 19 29 39 51 63 75 

3 12 114 108 101 91 81 69 58 46 35 24 
-13 -6 1 9 17 26 35 46 57 68 
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71 

Number of measurements 
13 14 15 16 17 18 19 20 21 22 23 24 

-15 

163 

-6 

141 

0 -13 
124 143 

4 -7 
110 127 

8 -2 
98 113 

11 1 -8 
88 102 116 

14 4 -4 
80 93 105 



www.manaraa.com

Table 3. Continued 

Number of measurements 

R 6 1 2 3 4 5 6 7 8 9 10 11 12 

3 13 102 98 91 84 75 65 55 45 35 25 
-12 -6 1 8 15 23 32 42 52 62 

3 14 93 89 83 77 70 61 53 44 35 26 
-11 -5 1 7 14 21 29 38 47 57 

3 15 84 81 77 71 65 58 50 42 34 26 
-10 -5 0 6 13 20 27 35 44 52 

3 16 77 75 71 66 61 55 48 41 34 26 
-10 -5 0 6 12 18 25 32 40 48 

3 17 72 69 66 62 57 52 46 40 33 26 
-9 -5 0 5 11 17 23 30 37 45 

3 18 66 65 62 58 54 49 44 38 32 26 
-9 -4 0 5 10 16 22 28 35 42 

3 19 62 60 58 55 51 47 42 37 32 26 
-8 -4 0 4 9 15 20 26 33 39 

3 20 58 57 54 52 48 45 40 36 31 26 
-8 -4 0 4 9 14 19 25 31 37 

3 21 55 53 51 49 46 43 39 35 30 26 
-8 -4 0 4 8 13 18 23 29 35 

3 22 52 50 49 46 44 41 37 33 29 25 
-7 -4 0 4 8 12 17 22 27 33 

3 23 49 48 46 44 42 39 36 32 29 25 
-7 -4 0 3 7 12 16 21 26 31 

3 24 46 45 44 42 40 37 35 31 28 24 
-7 -4 0 3 7 11 15 20 24 29 
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73 

Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 24 

16 7 0 -9 
73 84 96 108 

17 9 1 -5 
67 77 88 99 

18 11 4 -2 
62 71 81 92 

19 12 5 0 -7 
57 66 75 85 95 

20 13 7 1 -4 

53 61 70 79 88 

20 14 8 3 -2 
49 57 65 73 82 

21 15 10 4 0 -6 
46 53 61 69 77 85 

21 16 10 5 0 -4 
43 50 57 64 72 80 

21 16 11 6 2 -2 
41 47 54 61 68 75 

21 16 12 7 3 0 -5 
39 45 51 57 64 71 78 

21 17 12 8 4 0 -3 
36 42 48 54 60 67 74 

21 17 13 9 5 1 -2 
35 40 46 51 57 63 70 
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Table 4.4. Percentage Increase in multiplies of direct over indirect methods 
and percentage increase in computer memory of indirect oyer 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 
Bottom numbers = Percentage increases in computer memory 
G = Number of noise states 
XXX = Number greater than 1000% 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

4 1 XXX 

-26 
XXX 

-4 
XXX 

18 

897 

45 
493 

75 

276 
109 

153 
145 

78 
184 

30 
224 

4 2 XXX 

-28 

XXX 

-7 

XXX 

13 
810 
36 

485 
62 

293 
91 

175 
122 

100 
154 

50 
189 

4 3 XXX 

-27 

XXX 

-9 

XXX 

9 

689 
29 

450 

51 

292 
76 

187 
102 

116 
130 

66 

159 

4 4 XXX 

-26 

XXX 

-9 
797 
6 

574 
23 

404 
43 

280 
64 

190 
86 

126 
111 

79 
136 

4 5 950 
-24 

783 
-10 

622 
4 

477 
19 

357 
36 

261 
54 

187 
74 

131 
95 

87 
117 

4 6 701 
-22 

601 
-9 

498 
3 

401 
16 

315 
31 

241 
47 

181 
64 

132 
82 

93 

102 

4 7 543 
-20 

478 
-9 

410 
2 

342 
13 

278 
26 

221 
41 

172 
56 

130 
72 

96 

89 

4 8 437 
-19 

393 

-9 
344 
1 

295 

11 
247 
23 

202 
36 

162 
49 

127 
64 

97 
79 

4 9 362 

-17 

330 

-8 
295 
0 

258 
10 

221 
20 

186 
31 

153 
44 

123 
57 

96 

70 

4 10 307 
-16 

283 

-8 
257 
0 

228 

8 
199 
18 

170 
28 

143 
39 

118 
51 

94 
63 

4 11 266 
-15 

247 
-8 

226 

0 

204 

7 
181 
16 

157 
25 

134 
35 

113 
46 

92 
57 

4 12 233 

-14 

219 

-7 

202 
-1 

184 

7 

165 

14 

145 
23 

126 
32 

107 
42 

90 
52 
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75 

Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 24 

0 
266 

-29 
309 

16 
224 

-8 
261 

31 
190 

5 
222 

-15 
254 

44 
162 

17 
190 

-2 
218 

54 28 7 
140 164 189 214 

61 36 16 0 -15 
122 143 165 187 210 

67 43 24 7 -6 
107 126 145 165 186 

71 48 30 14 0 -11 
95 112 129 147 165 184 

73 52 35 19 6 -4 
85 100 115 131 148 165 

74 55 39 24 11 0 
76 90 104 118 133 149 

74 57 41 28 16 5 
69 81 94 107 121 135 

-9 
165 

-4 
149 

73 58 
63 74 

44 31 19 9 
86 98 110 123 

0 -9 
136 150 
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Table 4. Continued 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

4 13 207 195 182 167 151 135 119 102 87 

-13 -7 -1 6 13 21 29 38 48 

4 14 186 176 165 153 140 126 112 98 84 
-12 -7 -1 5 12 19 27 35 44 

4 15 168 161 151 141 130 118 106 93 81 
-12 -6 -1 5 11 18 25 32 40 

4 16 154 147 139 130 121 111 100 89 78 

-11 -6 -1 4 10 16 23 30 37 

4 17 141 136 129 121 113 104 95 85 75 

-11 -6 -1 4 9 15 21 28 35 

4 18 131 126 120 113 106 98 90 81 73 

-10 -6 -1 3 9 14 20 26 32 

4 19 122 117 112 106 100 93 86 78 70 
-10 -5 -1 3 8 13 19 24 30 

4 20 113 110 105 100 94 88 82 75 68 
-9 -5 -1 3 7 12 17 23 29 

4 21 106 103 99 94 89 84 78 72 65 
-9 5 -1 3 7 12 16 22 27 

4 22 100 97 93 89 85 80 75 69 63 
-8 -5 -1 2 7 11 15 20 25 

4 23 94 92 89 85 81 76 71 66 61 
-8 -5 -1 2 6 10 15 19 24 

4 24 89 87 84 81 77 73 69 64 59 
-8 -5 -1 2 6 10 14 18 23 
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77 

Number of measurements 

13 14 15 16 17 18 19 2Q 21 22 23 24 

72 58 45 33 22 12 3 -4 

57 68 78 90 101 113 125 138 

71 58 46 35 25 15 7 0 -8 
53 62 72 82 93 104 115 127 139 

69 58 47 37 27 18 10 2 -4 
49 58 67 76 86 96 107 117 128 

67 57 47 38 29 20 12 5 -1 
45 53 62 71 80 89 99 109 119 

66 56 47 38 30 22 14 7 1 -5 
42 50 58 66 74 83 92 102 111 121 

64 55 47 39 31 23 16 9 3 -2 
39 46 54 62 70 78 86 95 104 113 

62 54 47 39 32 24 18 11 5 0 -6 
37 44 50 58 65 73 81 89 97 106 115 

60 53 46 39 32 25 19 13 7 1 -3 
35 41 47 54 61 69 76 84 92 100 108 

59 52 45 39 32 26 20 14 9 3 -1 
33 39 45 51 58 65 72 79 86 94 102 

57 51 45 39 33 27 21 15 10 5 0 -4 
31 36 42 48 55 61 68 74 82 89 96 104 

55 50 44 38 33 27 22 17 11 6 2 -2 
29 34 40 46 52 58 64 71 77 84 91 98 

54 49 43 38 33 28 22 17 13 8 3 0 
28 33 38 43 49 55 61 67 73 80 86 93 
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Table 4.5. Percentage increase in multiplies of direct over indirect methods 
and percentage increase in computer memory of indirect over 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 

Bottom numbers = Percentage Increases in computer memory 
6 = Number of noise states 
XXX = Number greater than 1000% 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

5 1 XXX 

-22 

XXX 

-5 

XXX 

13 

XXX 

34 

XXX 

59 
632 
86 

391 
115 

244 
146 

5 2 XXX 

-24 
XXX 

-8 
XXX 

9 
XXX 

28 
990 
49 

632 

73 

410 
99 

269 
126 

5 3 XXX 

-25 
XXX 

-9 
XXX 

6 
XXX 

23 
894 
42 

605 
62 

412 
85 

282 
108 

5 4 XXX 

-24 
XXX 

-10 
XXX 

4 
XXX 

19 
785 
35 

561 
53 

401 
73 

286 
94 

5 5 XXX 

-23 
XXX 

-10 
XXX 

2 
897 
15 

681 
30 

512 
46 

382 
64 

283 
82 

5 6 XXX 

-22 
XXX 

-10 
922 

1 
745 
13 

591 
26 

462 
40 

358 
56 

275 
72 

5 7 XXX 

-21 
879 
-10 

750 
0 

627 
11 

515 
22 

416 
35 

333 

49 

263 

64 

5 8 803 
-19 

715 
-10 

625 

-1 

536 

9 

452 
20 

376 
31 

308 
44 

250 
57 

5 9 660 

-18 
596 
-10 

530 

-1 
464 
8 

400 

17 

340 
28 

285 
39 

237 
51 

5 10 554 
-17 

507 
-9 

458 

-1 
407 
6 

357 
15 

309 
25 

264 
35 

223 
46 

5 11 475 
-16 

439 
-9 

401 
-2 

361 
6 

321 
14 

282 
22 

245 
32 

211 
42 

5 12 414 
-15 

385 
-9 

355 
-2 

323 
5 

291 
12 

259 
20 

228 
29 

199 
38 
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79 

Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 

151 
178 

89 
212 

46 
248 

15 
284 

-7 
322 

175 
154 

110 
184 

65 
215 

32 

247 
7 

279 
-12 
313 

192 
133 

128 
159 

82 
186 

47 
214 

21 
243 

1 
273 

-16 
303 

203 

116 
142 
139 

96 
163 

61 

187 

34 

213 

13 

239 

-3 
266 

208 
101 

151 
122 

107 
143 

72 
165 

45 
187 

23 
210 

6 
234 

-8 
258 

209 
89 

156 
107 

115 
126 

81 
146 

55 
166 

33 
187 

15 
208 

0 
230 

-13 
252 

206 
79 

159 
95 

120 
112 

89 
130 

63 

148 
41 
166 

23 
186 

8 
205 

-4 
225 

205 
71 

159 
85 

124 
101 

94 
116 

69 
133 

48 
149 

30 
167 

15 
184 

3 
203 

-8 
221 

194 
64 

157 

77 

125 
91 

98 
105 

74 
120 

54 
135 

37 
151 

22 
167 

9 
183 

-1 
200 

187 
57 

154 
69 

lis 
82 

100 
95 

78 
109 

59 
122 

42 
137 

28 
151 

15 
167 

4 
182 

-5 
198 

179 
52 

150 
63 

124 

75 
101 
87 

81 
99 

63 

112 
47 
125 

32 

138 
20 
152 

9 
166 

0 
181 

171 146 122 101 
48 58 68 79 

82 65 50 
91 102 114 

37 
127 

25 14 4 -4 
140 153 166 180 
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Table 5. Continued 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

5 13 365 
-14 

342 
-8 

318 
-2 

292 
4 

265 

11 

239 

18 
213 
26 

187 
35 

5 14 326 
-14 

307 
-8 

287 
-2 

266 

4 

244 

10 

221 

17 
199 
24 

177 
32 

5 15 294 
-13 

278 
-8 

261 
-2 

243 
3 

225 
9 

206 

16 
186 
22 

167 
30 

5 16 267 
-12 

254 

-7 

240 
-2 

224 
3 

208 

8 

192 

14 
175 
21 

159 
28 

5 17 244 
-12 

233 

-7 

221 
-2 

208 
3 

194 
8 

180 
13 

165 
19 

151 
26 

5 18 225 

-11 

215 

-7 

205 

-2 

193 

2 
181 

7 

169 
12 

156 

18 
143 

24 

5 19 208 
-11 

200 

-7 
191 
-2 

181 
2 

170 
7 

159 
12 

148 
17 

136 
22 

5 20 194 
-10 

186 
-6 

178 
-2 

170 
2 

160 
6 

150 
11 

140 
16 

130 
21 

5 21 181 

-10 
174 
-6 

167 
-2 

160 
2 

151 
6 

143 
10 

134 
15 

124 
20 

5 22 170 
-9 

164 
-6 

157 
-2 

151 
1 

143 

5 

135 

10 
127 
14 

119 
19 

5 23 160 
-9 

154 
-6 

149 
-2 

143 
1 

136 
5 

129 
9 

122 
13 

114 
18 

5 24 151 
-9 

146 
-6 

141 
-2 

135 
1 

129 
5 

123 
9 

116 
13 

109 
17 
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Number of measurements 
13 14 15 16 17 18 19 20 21 22 23 24 

163 141 120 101 83 68 53 40 28 18 8 0 
44 53 63 73 83 94 105 117 129 141 153 166 

156 136 117 100 84 69 55 43 32 22 12 4 
40 49 58 67 77 87 97 108 119 130 142 153 

149 131 114 99 84 70 57 45 35 25 16 8 
37 45 54 62 72 81 90 100 111 121 132 142 

142 127 111 97 83 70 59 47 37 28 19 11 
35 42 50 58 67 75 84 93 103 113 123 133 

136 122 108 95 82 71 59 49 39 30 22 14 
32 39 47 54 62 70 79 87 96 105 115 124 

130 118 105 93 82 70 60 50 41 32 24 16 
30 37 44 51 58 66 74 82 90 99 107 116 

125 113 102 91 80 70 60 51 42 34 26 19 
28 35 41 48 55 62 69 77 85 93 101 109 

120 109 99 89 79 70 60 52 43 35 28 21 
27 33 39 45 51 58 65 72 80 87 95 103 

115 105 96 87 78 69 60 52 44 37 29 23 
25 31 36 42 49 55 62 68 75 82 90 97 

110 102 93 85 76 68 60 52 45 38 31 24 
24 29 34 40 46 52 58 65 71 78 85 92 

106 98 90 83 75 67 60 52 45 38 32 26 
23 27 33 38 44 49 55 61 68 74 81 87 

102 95 88 81 73 66 59 52 46 39 33 27 
21 26 31 36 41 47 52 58 64 70 77 83 
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Table 4.6. Percentage increase in multiplies of direct over indirect methods 
and percentage increase in computer memory of indirect over 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 
Bottom numbers = Percentage increases in computer memory 
6 = Number of noise states 
XXX = Number greater than 1000% 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

6 1 XXX 

-19 

XXX 

-5 

XXX 

10 

XXX 

28 

XXX 

47 

XXX 

70 
772 
94 

6 2 XXX 

-22 
XXX 

-7 
XXX 

7 
XXX 

23 
XXX 

41 
XXX 

60 
779 
82 

6 3 XXX 

-23 
XXX 

-9 
XXX 

4 
XXX 

18 
XXX 

35 
XXX 

52 
760 
71 

6 4 XXX 

-23 
XXX 

-10 
XXX 

2 
XXX 

15 
XXX 

30 
988 
45 

722 
63 

6 5 XXX 

-22 
XXX 

-11 
XXX 

1 
XXX 

12 
XXX 

25 
886 
40 

673 
55 

6 6 XXX 

-22 
XXX 

-11 
XXX 

-1 
XXX 

10 
XXX 

22 
790 
35 

621 
49 

6 7 XXX 

-21 
XXX 

-11 
XXX 

-1 
XXX 

8 
863 
19 

703 
31 

569 
43 

6 8 XXX 

-20 
XXX 

-11 
XXX 

-2 
887 

7 
751 
17 

628 

27 
521 
39 

6 9 XXX 

-19 

983 

-11 

872 
-2 

763 
6 

659 

15 

563 

24 
477 
35 

6 10 912 
-18 

830 
-10 

747 
-3 

664 
5 

584 
13 

508 
22 

438 
31 

6 11 777 

-17 

714 
-10 

650 
-3 

585 

4 

521 

12 

460 

20 
403 
29 

6 12 672 
-16 

623 

-10 
572 
-3 

521 
3 

469 

10 
419 
18 

372 
26 
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Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 24 

513 
119 

346 
146 

234 
174 

157 
204 

102 
234 

62 
266 

32 
298 

9 
331 

-8 
365 

534 

105 
371 

129 

260 

154 

180 

180 

123 

207 
81 

235 

48 
264 

24 

293 
4 

323 
-12 

354 

540 
92 

387 
113 

278 
136 

200 
159 

142 
183 

98 
208 

64 
234 

38 
260 

17 
287 

0 
314 

-15 
342 

531 

81 
392 
100 

290 
120 

215 
141 

157 
163 

113 
185 

78 
208 

51 
232 

29 
256 

11 
280 

-3 
305 

512 

71 
389 
89 

296 
107 

225 
125 

169 
145 

125 
165 

91 
186 

63 
207 

40 
228 

21 
251 

6 
273 

-6 
296 

486 
63 

380 

79 

297 
95 

230 
112 

178 
130 

135 
148 

101 
166 

73 
186 

50 
205 

31 
225 

15 
246 

2 
266 

458 

57 
367 
71 

293 

85 

233 

101 
183 

117 
143 
133 

110 
150 

82 

167 
59 
185 

40 
203 

24 
222 

10 
241 

429 

51 

351 

64 

286 

77 

232 

91 
186 

105 
148 
120 

117 
136 

90 
152 

67 
168 

48 

184 

32 

201 
18 

219 

401 
46 

335 
58 

278 
70 

229 
82 

187 
96 

152 
109 

122 
123 

96 
138 

74 
153 

55 

168 

39 

183 
24 

199 

374 
42 

318 
52 

268 
63 

225 
75 

187 

87 
154 
100 

125 
113 

101 
126 

80 
140 

61 
154 

45 
168 

31 
183 

349 
38 

301 
48 

258 
58 

219 
69 

185 

80 
154 
91 

128 
103 

105 
116 

84 

128 

66 

141 
50 
154 

36 
168 

327 
35 

285 
44 

247 
53 

213 
63 

182 
74 

154 
84 

129 
95 

107 
107 

88 
118 

71 
130 

55 
142 

41 
155 
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Table 6. Continued 

Number of measurements 

R G I 2 3 4 5 6 7 8 9 10 11 12 

6 13 590 
-15 

550 
-9 

510 
-3 

468 
3 

426 
9 

384 
16 

344 
24 

6 14 524 
-15 

491 
-9 

458 
-3 

424 
2 

389 
8 

354 
15 

320 

22 

6 15 469 

-14 
443 
-9 

415 
-3 

386 
2 

357 
8 

327 
14 

298 
20 

6 16 424 
-13 

402 
-8 

379 
-3 

354 
2 

329 
7 

304 
13 

279 
19 

6 17 387 
-13 

368 
-8 

348 
-3 

327 
1 

306 
6 

284 
12 

262 

18 

6 18 355 

-12 

338 
-8 

321 
-3 

303 

1 

285 
6 

266 

11 

246 
16 

6 19 327 
-12 

313 

-8 

298 

-3 

282 

1 

266 

5 

249 

10 

233 

15 

6 20 303 
-11 

291 

-7 

278 
-3 

264 
1 

250 
5 

235 
10 

220 
14 

6 21 282 

-11 

271 

-7 

260 
-3 

248 
1 

235 

5 

222 
9 

209 
14 

6 22 264 
-10 

254 

-7 

244 
-3 

233 
0 

222 
4 

210 
8 

198 
13 

6 23 248 
-10 

239 

-7 

230 
-3 

220 
0 

210 

4 

200 
8 

189 
12 

6 24 233 

-10 

226 
"6 

217 
-3 

209 
0 

200 
4 

190 
8 

180 
11 
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Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 24 

306 270 237 206 178 153 130 109 91 74 59 46 
32 40 49 58 68 78 88 99 109 120 132 143 

287 256 226 199 174 151 130 110 93 77 63 50 
29 37 45 54 63 72 82 91 101 112 122 133 

270 243 217 192 169 148 129 111 94 79 66 53 
27 35 42 50 59 67 76 85 95 104 114 124 

254 230 207 186 165 146 127 111 95 81 68 56 
25 32 39 47 55 63 71 79 88 97 107 116 

240 219 199 179 160 142 126 110 96 82 70 58 
24 30 37 44 51 59 66 74 83 91 100 109 

227 209 190 173 156 139 124 109 96 83 71 60 
22 28 34 41 48 55 62 70 78 86 94 102 

216 199 182 166 151 136 122 108 96 84 72 62 
21 26 32 39 45 52 59 66 73 81 88 96 

205 190 175 161 146 133 120 107 95 84 73 63 
20 25 31 36 42 49 55 62 69 76 83 91 

195 182 168 155 142 130 117 106 95 84 74 64 
18 24 29 34 40 46 52 59 65 72 79 86 

186 174 162 150 138 126 115 104 94 84 74 65 
17 22 27 33 38 44 50 56 62 68 75 81 

178 167 156 145 134 123 113 102 93 83 74 66 
16 21 26 31 36 41 47 53 59 65 71 77 

170 160 150 140 130 120 110 101 92 83 74 66 
16 20 25 29 34 39 45 50 56 62 67 74 
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Table 4,7, Percentage increase in multiplies of direct over indirect methods 
and percentage increase in computer memory of indirect over 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 
Bottom numbers = Percentage increases in computer memory 
G = Number of noise states 
XXX = Number greater than 1000% 

Number of measurements 
8 9 10 11 12 

1 XXX XXX XXX XXX XXX XXX 

-17 -5 8 23 39 58 

2 XXX XXX XXX XXX XXX XXX 

-1.9. -7 5 19 34 51 

3 XXX XXX XXX XXX XXX XXX 

-21 -9 3 15 29 45 

4 XXX XXX XXX XXX XXX XXX 

-21 -10 1 12 25 39 

5 XXX XXX XXX XXX XXX XXX 

-21 -11 0 10 22 34 

6 XXX XXX XXX XXX XXX XXX 

-21 -11 -2 8 19 30 

7 XXX XXX XXX XXX XXX XXX 

-20 -11 -2 7 16 27 

8 XXX XXX XXX XXX XXX XXX 

-20 -11 -3 5 14 24 

9 XXX XXX XXX XXX XXX 871 
-19 -11 -3 4 13 22 

10 XXX XXX XXX XXX 895 780 
-18 -11 -4 3 11 19 

11 XXX XXX 991 892 795 703 

-17 -11 -4 3 10 18 

12 XXX 947 868 790 712 637 
-17 -10 -4 2 9 16 
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Number of measurements 
13 14 15 16 17 18 19 20 21 22 23 24 

XXX 
78 

915 
100 

640 
122 

454 
146 

326 
172 

234 
197 

167 
224 

117 
252 

79 
280 

50 
309 

27 
339 

8 
269 

XXX 
69 

928 
89 

664 
109 

482 
131 

353 
154 

260 
177 

191 
201 

138 
226 

98 
252 

66 

278 

41 
305 

21 
332 

XXX 
61 

915 
79 

672 
98 

499 
117 

374 
138 

281 

159 

211 
181 

157 
203 

115 
226 

82 
250 

55 
274 

34 
299 

XXX 
54 

883 

70 

666 

87 

506 

105 

387 
123 

297 

143 

227 
162 

173 
183 

130 

204 

96 

225 

69 

247 

46 
269 

XXX 
48 

838 
63 

648 
78 

504 

94 

393 
111 

307 
128 

240 
146 

187 
165 

144 
184 

109 
203 

81 
223 

58 
244 

992 
43 

785 
56 

623 

70 

495 
85 

394 

100 

314 
116 

249 
132 

198 
149 

155 
167 

121 

184 

92 
203 

68 
221 

900 
38 

731 
51 

593 
63 

481 
77 

390 
91 

316 

105 

255 
120 

206 
136 

165 
151 

131 
168 

102 

184 
78 
201 

816 
35 

678 
46 

561 
57 

464 
70 

382 
82 

315 
96 

259 
109 

212 
124 

172 
138 

139 
153 

111 
168 

87 
184 

741 
31 

628 
41 

529 
52 

444 
64 

372 

75 

311 
87 

259 
100 

215 
113 

178 
127 

145 
140 

118 
154 

94 
169 

675 
28 

581 
38 

498 
48 

424 
58 

361 
69 

305 
80 

258 
92 

217 
104 

181 
116 

151 
129 

124 
142 

101 
155 

617 
26 

539 
35 

468 
44 

404 
53 

348 
63 

298 

74 

255 
85 

217 
96 

184 

107 

154 

119 

129 

131 
107 
143 

566 
24 

500 
32 

440 
40 

385 
49 

335 
59 

290 
68 

251 
78 

216 
89 

185 
99 

157 
110 

133 
121 

111 
133 
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Table 7. Continued 

Number of measurements 
R G 1 2 3 4 5 6  7 8 9  1 0  1 1  1 2  

13 895 
-16 

833 
-10 

770 
-4 

706 
2 

643 
8 

581 
15 

14 791 
-15 

740 
-10 

689 
-4 

636 

1 
584 

7 
532 
13 

15 706 
-15 

664 

-10 

621 

-4 
578 

1 

534 
6 

490 
12 

16 636 

-14 

601 
-9 

565 
-4 

528 

1 

491 
6 

454 
11 

17 577 
-14 

547 
-9 

517 
-4 

485 
0 

454 
5 

422 
10 

18 527 
-13 

502 

-9 
476 

-4 

449 
0 

421 
5 

394 

10 

19 485 
-13 

463 
-8 

440 
-4 

417 
0 

393 
4 

368 
9 

20 448 
-12 

429 
-8 

409 
-4 

388 
0 

367 
4 

346 
8 

21 416 
-12 

399 
-8 

382 
-4 

364 
0 

345 
4 

326 
8 

22 388 

-11 

373 
-8 

358 

-4 

342 

0 

325 
3 

308 

7 

23 363 

-11 

350 

-7 

336 

-4 

322 

0 

307 
3 

292 

7 

7 24 341 329 317 304 291 277 

- 1 1  - 7  - 4 - 1 3  7  
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Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 24 

522 

22 

466 

29 

414 

37 

366 

46 

322 
54 

282 
63 

246 

73 

213 

82 

185 

92 
159 
102 

135 

113 
115 
123 

482 
20 

435 
27 

390 
34 

348 
42 

309 
50 

273 
59 

240 
68 

211 
77 

184 
86 

159 
95 

137 
105 

118 
115 

448 
19 

407 
25 

368 
32 

331 
39 

296 

47 

264 
55 

234 
63 

207 
71 

182 
80 

159 
89 

139 
98 

120 
108 

417 

17 

382 
23 

347 
30 

315 
37 

284 

44 

255 

51 

228 

59 

203 

67 
180 
75 

159 
83 

139 
92 

121 
101 

390 

16 

359 
22 

329 
28 

300 
34 

272 
41 

246 
48 

222 
55 

199 
63 

177 
70 

158 
78 

139 
86 

122 
95 

366 

15 

339 
20 

312 
26 

286 
32 

261 
39 

238 
45 

215 
52 

194 
59 

175 
66 

156 

74 
139 
81 

123 
89 

344 
14 

320 

19 

296 
25 

273 
30 

251 
36 

230 
43 

209 

49 
190 
56 

171 
62 

154 
70 

138 

77 

123 

84 

325 
13 

303 

18 

282 
23 

261 

29 

241 
34 

222 
40 

203 
46 

185 
53 

168 

59 
152 
66 

137 
73 

123 
80 

307 
12 

288 

17 

269 

22 

250 

27 

232 
32 

214 
38 

197 
44 

181 
50 

165 
56 

150 
62 

136 
69 

122 

75 

291 
12 

274 
16 

257 
21 

240 
26 

223 
31 

207 
36 

191 
42 

176 
47 

161 
53 

147 
59 

134 
65 

121 
72 

277 
11 

261 
15 

246 
20 

230 
24 

215 
29 

200 
34 

186 
39 

172 
45 

158 
50 

145 
56 

132 
62 

120 
68 

263 249 235 221 207 194 180 167 155 142 131 119 
10 14 19 23 28 33 38 43 48 53 59 65 
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Table 4.8. Percentage Increase In multiplies of direct over Indirect methods 
and percentage Increase In computer memory of Indirect over 
direct methods for (value of R) signal variables 

Top numbers = Percentage increase in multiplies 
Bottom numbers = Percentage Increases in computer memory 
G = Number of noise states 
XXX = Number greater than 1000% 

Number of measurements 
R G 1 2 3 4 5 6 7 8 9  1 0  1 1  1 2  

8 1 XXX XXX XXX XXX XXX 

-15 -5 6 19 33 

8 2 XXX XXX XXX XXX xxx 
-17 -7 4 16 29 

8 3 XXX XXX XXX XXX xxx 
-19 -9 2 13 25 

8 4 XXX XXX XXX xxx xxx 
-20 -10 0 10 22 

8 5 xxx XXX xxx XXX xxx 
-20 -11-1 8 19 

1 6 XXX XXX XXX XXX XXX 

-20 -11 -2 7 16 

Î 7 XXX XXX XXX XXX XXX 

-20 -11 -3 5 14 

I 8 XXX XXX XXX XXX XXX 

-19 -12 -4 4 12 

1 9 XXX XXX XXX XXX XXX 

-19 -11 -4 3 11 

10 XXX XXX XXX XXX XXX 

-18 -11 -4 2 10 

11 XXX XXX XXX XXX XXX 

-18 -11 -5 2 8 

12 XXX XXX XXX XXX XXX 

-17 -11 -5 17 
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Number of measurements 
13 14 15 16 17 18 19 20 21 22 23 24 

XXX 

49 

XXX 

66 
XXX 

85 
XXX 

105 
770 
125 

569 

147 

424 
169 

319 

192 

240 

216 
180 
241 

133 

266 
97 
292 

XXX 

44 
XXX 

59 
XXX 

76 
XXX 

94 
796 
113 

598 
133 

453 
153 

346 

175 

265 
196 

202 
219 

154 
242 

115 
265 

XXX 

39 
XXX 

53 
XXX 

69 
XXX 

85 
807 
102 

616 
120 

475 
139 

368 
158 

287 
178 

223 
199 

172 
220 

132 
241 

XXX 

34 

XXX 

47 

XXX 

62 

XXX 

77 

804 
93 

625 

109 
490 
126 

385 
144 

304 

162 
240 
181 

189 
200 

148 
220 

XXX 

30 
XXX 

42 
XXX 

56 
XXX 

69 
788 
84 

624 
99 

497 
115 

397 
131 

318 
148 

255 
165 

204 
182 

162 
200 

XXX 

27 
XXX 

38 
XXX 

50 
952 
63 

764 
76 

616 
90 

498 
104 

404 
119 

328 
135 

267 
150 

216 
167 

175 
183 

XXX 

24 
XXX 

34 
XXX 

45 
897 

57 
734 
69 

602 
82 

494 
95 

407 
109 

335 
123 

276 
138 

226 

153 
185 
168 

XXX 

21 
XXX 

31 
XXX 

41 
841 
52 

701 
63 

583 
75 

486 

87 

405 

100 

338 
113 

282 
126 

234 
140 

194 
154 

XXX 

19 
XXX 

28 
929 
38 

787 
48 

666 
58 

562 
69 

475 
80 

401 
92 

338 
104 

285 
116 

240 
129 

201 
142 

XXX 

17 

990 
26 

854 
34 

735 
44 

631 
53 

540 
63 

462 

74 

395 

85 

337 
96 

287 
108 

244 
119 

206 
132 

XXX 

16 
900 
23 

787 
32 

686 
40 

596 
49 

517 
59 

447 
68 

386 

78 

333 
89 

286 

100 

246 
111 

210 
122 

922 
14 

821 
21 

727 
29 

641 
37 

564 
46 

494 
54 

432 
63 

377 
73 

328 
83 

285 
93 

246 
103 

213 
113 
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Table 8. Continued 

Number of measurements 

R G 1 2 3 4 5 6 7 8 9 10 11 12 

8 13 XXX 
-16 

XXX 
-11 

XXX 
-5 

XXX 
1 

925 
7 

8 14 XXX 
-16 

XXX 
-10 

989 
-5 

913 
0 

837 
6 

8 15 XXX 
-15 

951 
-10 

889 
-5 

826 
0 

763 
5 

8 16 909 
-15 

857 
-10 

805 
-5 

752 
0 

699 
5 

8 17 822 
-14 

778 
-10 

734 
-5 

689 
0 

644 
4 

8 18 749 
-14 

712 
-9 

673 
-5 

635 
-1 

596 
4 

8 19 686 
-13 

654 
-9 

621 
-5 

588 
-1 

554 
3 

8 20 632 
-13 

604 
-9 

576 
-5 

546 
-1 

517 
3 

8 21 586 
-12 

561 
-9 

536 
-5 

510 
-1 

484 
3 

8 22 545 
-12 

523 
-8 

501 
-5 

478 
-1 

455 
2 

8 23 509 
-12 

490 
-8 

470 
-5 

449 
-1 

429 
2 

8 24 477 
-11 

460 
-8 

442 
-5 

424 
-1 

405 
2 
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Number of measurements 

13 14 15 16 17 18 19 20 21 22 23 24 

837 
13 

753 
20 

674 

27 

600 
34 

533 
42 

472 
50 

416 
59 

366 

68 
322 

77 

282 
86 

246 
96 

214 
106 

764 

12 

693 

18 

626 

25 

563 

32 

504 

39 

450 

47 

401 
55 

355 
63 

315 
72 

278 
81 

244 
90 

215 
99 

701 

11 

641 

17 

583 
23 

529 
30 

477 
37 

429 
44 

385 
51 

344 
59 

307 
67 

273 
75 

242 
84 

214 
93 

646 
10 

595 
16 

545 
22 

498 
28 

452 
34 

410 

41 

370 

48 

333 
56 

299 

63 
268 

71 

239 

79 
213 
87 

599 
9 

554 
15 

511 
20 

469 
26 

429 
32 

392 
39 

356 
45 

322 
52 

291 
59 

262 
67 

236 
74 

211 
82 

557 
9 

518 
14 

480 
19 

444 
24 

408 
30 

374 
36 

342 
43 

312 
49 

283 
56 

257 
63 

232 
70 

209 
77 

520 
8 

486 
13 

453 

18 
420 
23 

388 
29 

358 
34 

329 
40 

301 
46 

275 
53 

251 
59 

228 
66 

206 

73 

487 
7 

457 
12 

428 

17 

399 
22 

370 
27 

343 
32 

317 
38 

291 
44 

268 
50 

245 
56 

223 
63 

203 
69 

458 
7 

431 
11 

405 
16 

379 
21 

353 
25 

329 
31 

305 
36 

282 
42 

260 
47 

239 
53 

219 
59 

200 
66 

431 
6 

408 
11 

384 
15 

361 
19 

338 
24 

315 
29 

294 
34 

273 
40 

252 
45 

233 
51 

214 
56 

197 
62 

408 
6 

386 

10 

365 

14 
344 

18 

323 

23 
303 
28 

283 
33 

264 

38 
245 
43 

227 

48 

210 

54 
193 
59 

386 
6 

367 
9 

348 
13 

329 
18 

310 
22 

291 
26 

273 
31 

255 
36 

238 
41 

221 
46 

205 
51 

190 
57 
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V. EXAMPLES 

Both examples demonstrate the use of the direct complementary filter 

to derive a distortionless estimate of the signal. 

A. Example I 

For the first example, consider the following measurement equations, 

yi(c%) = + n^(t^) (5.1) 

y3<"Tc> ' ViSjdT,) + YzSz'tk) + (5-3) 

Assume that n^, ng, and n^ are uncorrelated "white" measurement noises 

with variances v^^, '^^2* respectively. The state vector has only 

two states. Let x^^ denote and Xg denote Sg where the time notation 

has been dropped. Then the measurement equation is 

1 0 

r*i" 
+ y = 0 1 

1 1 

(5.4) 

The covariance matrix will be a two by two and is written as 

P* 
11 

' 1 2  

12 

• 2 2  

(5.5) 

Even though this example has no P^ or 3^, the theory of the direct filter 

will apply equally well. There is no reason to find a transistion matrix 

or an H matrix because they are not used in this example. 
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The steps of the algorithm will now be described in detail. 

0 o" 

0 0 

= 
0 

0 

1 0 

0 1 

(5.6) 

(5.7) 

(5.8) 

T 
Vi = 

'l 0 1 1 

0 1 0 0 

(5.9) 

M,R M, = 1 
l o i  

(5.10) 

\ = (5.11) 

*1 " 
Yi = (5.12) 

[:;] 

•• • I:- 3 

(5.13) 

(5.14) 

(5.15) 
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^1 = 

0 0 

0 1 

Since is not zero, the following calculations are made: 

T 
Ri4 = 

0 

1 

1 

The gain matrix is 

b. 

The update of x^ is 

"yi" "o" 
'^1 

_ 0 _  

+ 
_1_ 

^2 = 

-^2-

Next, calculate 

% = [::] 
(I - bgMg) [;:] 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 
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^2 = 

0 0 

0 0 
(5.24) 

The next input is ready for processing. The gain matrix now is 

^3 = 

"^11 ° 
-

"^1" 

0 V 
22 ."^2. 

[Yi-V2^ 

'^11 

_0 

0 

^22. V2J 

+ V 
33 

(5.25) 

and reduces to 

^3 = 

Yi^ll 

1^2^22 J 

^2^22 "*• V33) 

The update of Xg is 

*3 

(5.26) 

"yf 
1 

."2. 

+ 

. TlVll+Y|v22'*33. .•<2^22. 

(y3'^l^l"^2^2) <5.27) 

or 

A 

"3 ' 

y, + ; 
^ril-^'22-^33 

Y2V;2(y3-Viyi-V2y;) 

^l?ll+Y2T22+'33 

(5.28) 
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Next consider solving the same problem by the indirect method. One 

method of Implementing this is shown in Figure 3.1. 

Kalman 

Filter 

Figure 5.1. Block diagram of indirect filter. 

The assumption was that 02» and n^ are white noises and are 

uncorrelated, then the Kalman filter in this case will be trivial. From 

Brown and Nilsson (6), the optimal transfer functions for estimating 

A J A 
and are 

A _ ^IN 

"^2^2 ViGi(«3) + y + GgCw) 
(5.29) 

Yl"l = 
^l^lfw) yIN 

+ 72^2 («») 63(10) 
(5.30) 

where G^((U) is the power spectral density function for n^(t) and 

^IN (^3 " " ̂ ^2^' Also from Brown and Nilsson (6) if n^(t) is 

2 
white noise then is white noise and (uu) = y^v^^ . 

Therefore, the optimal estimate of n^ and ng becomes 
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n, = 
- ̂ 2^2) 

' "33 + Vfvii + T^v, 

(5.31) 

22 

A _ -^22^2(^3 - - %) 
n, = 2 y — (5.32) 

V33 + Ylvii + Y|V22 

The best estimate of the signal is 

and 

*2.72-2=^2+ (s.w) 
^1^11 + T%V22 + TÏ, 

Note, these estimates of the signal are identical to those obtained in 

the direct filter. The purpose of this example was to demonstrate the 

algorithm for the direct filter and to reassure the reader that the results 

are identical to the indirect filter. It also indicates that the com­

putation time in the direct approach is longer for this example: 

ï% = 6818% (5.35) 

B. Example II 

For the second example, consider the case of altitude determination 

with the distortionless constraint. Assuming there are three measurements 

for altitude determination which are as follows : 

1. Altitude derived from accelerometer measurements corrupted by 

white noise. 

2. Altitude from barometer. (Which is a measure of true altitude 
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corrupted by Markov noise.) 

3. Altitude from radar altimeter. (Which is a true measure of 

altitude corrupted by white noise.) 

Let the signal state be altitude and let it be a Markov process. It has 

been shown that it can be chosen as any process that is desired, because 

it doesn't enter into the estimation of the signal. 

The first step is to determine a model for this system and hence, 

the state equations. The Kalman filter requires that all inputs to the 

filter must be white noise processes, therefore, consider the following 

model for the altitude input. 

s 
S + B 

s 

X. 

where f^ is unity white noise and x^ is the altitude variable. 

The differential equation that describes the above system is 

(5.36) 

Assume the noise associated with the accelerometer measurement will be 

doubly integrated white noise, shown in the following block diagram. 

A/S 
3 

1/S A/S 1 1/S 

It will take two states to describe this system and the differential 

equations are 

*2 ° *3 

X3 = Afg 

(5.37) 

(5.38) 
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Assume the noise associated with the barometer will be a Markov process 

and will satisfy the following differential equation 

1 

h "Va +1% S (5.39) 

Assume the noise associated with the radar altimeters is white so it 

requires no state. 

Thus the state equation will have 4 states and can be written as 

L J 

-B 0 0 
s 

0 0 1 

0 0 0 

0 0 0 

0 

0 

0 

-B, 
N 

X. 

X, 

The state translstion matrix is given by 

Vs ̂1 

0 

Afj 

(5.40) 

4(t) = L'Hsi-A]"^ = 

d(t) becomes, 

d(t) = 

S+B„ 

0 1 

0 0 

0 0 

0 

t 

1 

0 

0 0 

S -1 

0 

0 

0 

0 

S+B 
N 

- 1  

(5.41) 

(5.42) 
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H is (including only first order terms in 

% 
0 

0 

0 

0 0 

0 A 

0 

0 

0 0 

At) 

At (5.43) 

The measurement matrix will be 

*1 

>1 
1 1 0  0  

*2 
6yi 

^2 
= 10 0 1 

*3 
+ ®y2 

/3 
10 0 0 ôyg 

(5.44) 

Assume that 6y^, Gyg, Sy^ are white noise sequences and are 

uncorrelated such that 

E[6y 6y] -

"11 ® 

'22 

0 

0 

'33 

(5.45) 

The a posteriori covariance matrix will be a four by four matrix 

and in partitioned form is 

1 3 
I 

Ï'T'PH 

1 

M
 

^2 "13 

H 
= 

"l2 "22 "23 "24 

"l3 "23 "33 "34 

"l4 "24 "34 "44 

(5.46) 
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The a priori covariance matrix is given by the following: 

0 

P* = 

0 I 

» 1 

0 j 0 

+ —I 

0 ! H 
' N 

(5.47) 

The extrapolated state matrix is 

r 0 
X ' = 

LS, 

(5.48) 

Look at the estimate of the signal and noise states at time t^. 

For simplicity assume that^ 

0 

1 

2 

1 

0 

2 

1 

1 

(5.49) 

and 

I _ 

0 
A . 

(5.50) 

Also assume that the variance of the measurement noises are 

Vii 1 , '22 2 ' V33 = 3' (5.51) 

1 * 
Note does not represent a physically possible covariance matrix 

in this numerical example. It was chosen for numerical convenience and 
does not need to be positive definite in order to compare the direct and 
indirect algorithms. 
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The first step is to calculate the gain matrix according to 

I M; 
IS 

^is ^ **is 

Update the states by 

il = i; + b^(yi-Mi^{) -

A ,  

YR^2 

Calculate the a posteriori covariance matrix by first finding 

Then 

(I-b^M^) = 

0 

0 

0 

0 

- 1 0  0  

10 0 

0 10 

0 0 1 
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Now 

"-"lAs' I «-'lAs' " » 

Thus the remaining Inputs will be processed as in steps 8 through 15 in 

Section B of Chapter 2. 

The gain equation for the second measurement is 

1/4" 

^2 = 
"4 

+ V22) 

0 

-1/4 

1/4 

(5.56) 

Update the states by 

*2 * *1 + ""z'yz-Mz*!) 

4 ?! + T y 

h 
Ik  

4 '1 

4^2 

+ T 
4 ̂ 2 

1 

4 yi 

4 yi 

3, .  ij. 
4 4 *2 

H2 

(5.57) 

The update of the covariance matrix is given by 

h' h • 

7 

4 

-1 

7 
"4 

5 

."4 

-1 

1 

2 

7 

"4 

3 

4 

5 

4 

5 

•4 

5 

4 

I f f  

(5.58) 
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The next measurement can be processed and the gain matrix is 

S = 

7 

4 

-1 

7 
"4 

5 
L"4 

7 

19 

_4 

"19 

7 
19 

_5 
Ll9 

(5.59) 

The update of the states is 

3 = *2 * 

7 
19 

4 
19 

7 
19 

5 
19 

[y. 
4 ̂ 1 

- f y, + r +Tx4] 4 4 4 2 

Ï9 yi + T? y 

16 A, 

19 2 

Î' + 

M ». 
19 *4 

19 '1 19 ^3 

10 
19 ̂ 1 

19 ^1 

19 ^2 

.  _3{ . .  -3 4 . 
19 *2 

+ lû) ̂ 1 + y, -19 '2 

4 
- 19 ^3 

19^3 

• 19 ^3 

19 *4 

19 4 

10 +_3  ̂  
19 2 19 4 

+ Î9 =2 

The new covariance matrix is 
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^3 = 

21 
19 

15 

" 19 

21 

" 19 
15 
' 19 

12 
" 19 

15 

19 
31 
19 

14 
19 

. 21 
19 

31 
19 

2 

• 19 
15 
38 

" 19 
14 
19 

15 
38 

27 
19 

(5.61) 

Next work the same problem from the indirect approach where n^(t) is 

doubly integrated Markov noise and ngCt) is Markov and n^ is white noise 

The implementation is shown in Figure 5,2, 

= S+n^(t) "*• 

72 = Sfn2(t) — 

= S+n^Ct) 

"2 

* "3""l 

Kalman 

Filter 

n^(t) 

Figure 5.2. Block diagram of Indirect filter. 

Two states will be needed to describe n^(t). 

*2 = *3 (5.62) 

Xg = Afg (5.63) 

One state is needed to describe [^(t) and is 

& - - V4 +^^3 
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No state will be required of n^Ct). 

The state equations can be written as 

0 1 

0 0 

0 

0 

0 0 -B, 
N 

A f 

f  
The state transition matrix is 

^ " 

0 i 0 d(t) = 

S+B, 
N 

and (including only first order terms in At) 

& ~-

0 0 

0 A 

0 0 2% 

At 

(5.65) 

(5.66) 

(5.67) 

The measurement matrix to the input of the Kalman filter will be 

r-

+ 

- 1 0  1  

- 1 0  0  

L*4J 

5 72 - 5 7% 

n. - 6 y. 
(5.68) 

Then to be consistent the covariance matrix will be 

* 
P = 

12 1 

2 11 

1 1 2  

(5.69) 
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Note that In the measurement matrix the signals will not be uncorrelated. 

Then 

V = E 

6 72 - 6y^ 

."3 " ' ru 

I 6 yj - 6 Vj Oj - 6 yjl 

3 1 

1 4 
(5.70) 

Thus the measurements must all be processed at once. The gain matrix 

is then 

^ m ^ m 
b = P M (MP M +V) 

1 4 

19 " 19 

3 7 
19 " 19 

6 5 

19 " 19 

Update the covariance matrix by 

15 

19 

31 
19 

14 
19 

P = P*-b(MP*M%V)b^= 31 

19 

2 

" 19 

15 
19 

14 
19 

15 

19 

27 

19 

(5.71) 

(5.72) 

Note that It is identical to the P^ in Equation 5.61. Update the state 

matrix by 
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A 
X 

1 4 

19 • 19 

3 7 
19 " 19 

6 5 

19 " 19 

y^ + x^ 

Nov 

yl = 72 - ?] 

72 = ?3 - ?] 

(5.73) 

(5.74) 

Substituting in Equation 5,73 and 5,74 and performing the indicated 

multiplication x becomes 

A 
X 

16 
19 2 

- + Â 
19 "4 • 19 ^1 * 

10 

19 ^2 19 ̂ 3 

10 A, , 3 A, 

• 19 ̂ ^2 + 19*4 +19 ̂ 1 "19^2 "19^3 

13 

19 *4 • 19 ^1 

19 "4 

6 
19 ^2 

_ -5y + _1 
19 ^3 ^ 19 2 

(5.75) 

This checks exactly with the noise states in the direct method. 

In this example, R = 1, G = 3, P = 3, and P% = 22%, Also, C% = 31%. 

In this example, the direct filter requires 22% longer than the 

indirect filter, but requires 31% less memory than the indirect. Note, 

if there was another measurement, the direct filter would be superior in 

both respects. 
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VI. SUMMARY 

The goal of this thesis was to prove that the optimal complementary 

Kalman filter could be obtained from the normal Kalman filter equations 

by letting the variances of the signal variables approach infinity. Since 

the infinity terms could introduce errors in the computation, an algorithm 

was developed that would circumvent the infinity terms completely. The 

significance of this development was that the measurements could be 

processed sequentially, which lead to the conclusion that this filter 

would be fail-safe. That is, if failures in the measurements existed, 

they could be omitted in the processing, but optimal estimates of the 

signals would still be obtained from the remaining measurements. This 

is an advantage over many complementary filtering methods to date. That 

is, if there were a failure among the inputs, a backup system would be 

needed if estimates of the signals were to be made. 

Another advantage is the ability to change the complementary Kalman 

filter equations to the usual Kalman filter equations. This can be 

accomplished by simple eliminating the first eight steps in the algorithm 

in Chapter II. Another, method would be to replace the variance of the 

signal variables with a large number in the usual Kalman filter equation 

to obtain the complementary Kalman filter. 

In Chapter III the complementary Kalman filter was extended to the 

time continuous case. This was developed by letting the time increments 

of the discrete filter approach zero. 

It was found that the calculation time for the complementary Kalman 

filter generally took longer than the indirect filter method. However, 
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if there are a large number of redundant measurements, the computation 

time will approach that of the indirect filter or even be less. The 

second example demonstrated the case where less time could be involved. 

A comparison of the amount of memory requirements was also made 

between the direct and indirect filters. It was found that the indirect 

filter required more memory than the direct for the cases of redundant 

measurements. 

Two simple examples were worked to demonstrate the use of the 

algorithm of the complementary filter. These examples were also worked 

by using the indirect filter and the results were identical. The first 

example was the case where there were no noise states and it was obvious 

that the indirect filter was superior. The second example was typical 

of a navigation system for altitude determination. It was found that 

the direct filter could be superior to the indirect filter, both from 

computation time and memory requirements. If one more redundant measure­

ment was added. 

In general, the conq>lementary Kalman filter is a fail-safe method 

to obtain the optimal estimate of the signals. Whether or not it is 

advantageous to use this method depends on the number of noise states 

and the amount of redundancy. With large redundancy the direct filter 

can be superior in all respects. 
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IX. APPENDIX A 

The purpose of Appendix A Is to determine the inverse of the 

following matrix as a approaches infinity. 

* P = 

a 0 

0 a 

. 0 

. 0 

. a 

O 

0 

N 

(A-1) 

A brief review of basic matrix manipulations are in order. The determinate 

of an (n x n) square matrix A is written as |a| . If the 1*"̂  row and j*"** 

column of the determinate |A| are deleted, the remaining n-1 rows and 

n-1 columns form a determinate |M^j|. This determinate is called the 

minor of element a^^. The cofactor of the element a^^ is equal to the 

minor of a.., with the sign (-1)^^^ affixed. Thus, the cofactor (G ) of 
ij 

a^j is defined as 

ij' 

(A-2) 

The Laplace expansion formula for the determinate of any (n x n) 

matrix A states that the determinant of A is given by the sum of the 

products of the elements of any single row or column and their respective 

cofactors. 

Thus 
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n 
|A| = S a. .C . j = 1, or 2,.». or n (column expansion) 

1=1 

(A-3) 

n 
|A| = Z a. .C 1 = 1, or 2,''« or n (row expansion) 

j=l ^ 

The matrix formed by the cofactor's is defined as the adjoint 

matrix of A. That is, the adjoint matrix is the transpose of the matrix 

formed by replacing the elements a^j by their cofactors. Then Derusso (8) 

defines the Inverse of A as: 

A-L . (A-4) 

Now to determine the inverse of Equation A-1, the determinate and 

adjoint matrix must be found. Using the row expansion of Equation A-3 

* 
the determinate of F is 

since a^g, ~ 0* 

However, 

where is the cofactor of P with the first row and column omitted. 

Expanding A-6 along row 2 ,  becomes 

=11 - ' 4^" 
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This process will be carried one step further 

n 
.(1.1) . ; , (1.1).(2,2) 
•=22 >31=33 (A-8) 

fl 1^ (2 2) 
where * is the cofactor of with rows 1 and 2 and columns 

1 and 2 omitted. 

* 
Now Pg is of rank r then Equation A-5 can be iterated r times to 

yield 

|P*) = afc(p'l)(2,2),..(r,r) (A-9) 

but c^l»l)(2,2),..(r,r)|p*| so Equation A-9 is 

|P*| = Â L?*! (A-10) 

* 
The cofactors of the diagonal terms in Pg can be written as 

= a^"l JP*1 for i s r (A-ll) 

since does not contain the term a^^. Also 

Cj, j = 0 for i and j ̂  r and i j (A-12) 

This is true because the cofactor of is obtained y deleting row i 

and column j and the remaining determinate will have a complete row or 

column of zeros. An expansion on a row of zeros will yield a determinate 

equal to zero. 

* 
The cofactors of P^ will be of the following form 

= *^C<^'l)(2,2),..(r,r),(i,j) for i and j s r + 1 (A-13) 

The elimination of rows and columns greater than r does not delete 
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any of the a's in P*. Note that for 1 and j ̂  
S ij 

* 
r + 1 are simply the cofactors of subnatrix P^. 

*-l 
Thus F can be written as 

0 ••• 0 

0 ^22 * * * ^ O 

0 # • • • c 

p*-l _ 
rr 

jr — 

Q a'AdJ P* 

(A-14) 

a' I?:! 

or 

*-l 

1 
a 

0 

1 

• • • 0 

• • • 0 

1 ... -

o 

o 

Adj P, 
N 

|p;i 

(A-15) 

*-l 
Taking the limit as a " P becomes 

*-l 

" 0 i 
1 

c 

0 i 
1 

(A-16) 
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X. APPENDIX B 

The Inverse of the following equation is desired. 

p-i. 

! 

i + 4'' 

(B-L) 

Let A = MgV'^g 

T -B = MJV 

C = I^r\ + p*-i 

then 

P"^ = 

"A ! B " 

-T 
1 1 

B 1 C 

(B-2) 

The partitioned form of P is 

P = 

' P„ 1 P^ " 
s • 

i 3 

1 
1 
1 
K 3 1 N 

(B-3) 

A matrix multiplied by its inverse is the identity matrix, thus, 

P"^P = 

"A B ' 

_T B C 

' P„ P^" 
S 3 

p^ 
_ 3 N _ 

= I (B-4) 
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Performing the indicated multiplication yields the following four 

equations : 

APg + BPg = I (B-5) 

AP3 + BPjj = 0 (B-6) 

B^Pg + CPg = 0 (B-7) 

B^Pg + CPjj = I (B-8) 

If the complementary constraint is to be used then the matrix Mg 

T 
is of rank r. The quantity MgV Mg is an r x r matrix of rank r and, 

T -L *-l 
hence, has a inverse. Also assuming that (M^V + P^ ) is invertible, 

the matrices A and C have an inverse. Equations B-5 and B-7 can be used 

to obtain the following equation. 

I = APg - BC'VPg = [A - BC'^B"^] Pg (B-9) 

Premultiplying both sides of Equation B-9 by [A - BC ^B^] ^ gives 

the following equation for Pg. 

Pg = [A - BC" V] (B-10) 

Upon substituting the values for A, B, C 

At this time a Matrix Inversion Lemma as given by Sorenson (14) will 

be introduced. 

Suppose ( n X n) matrices B and R are positive-definites. Let H 

be any, possibly rectangular, matrix. Let A be an n x n matrix related 
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to B, R, and H according to 

A = B - BH^CABH"^ + R]"^ HB (B-12) 

Then, A ^ is given by 

A"^ = B"^ + H'^R"^ (B-13) 

The proof is accomplished by direct multiplication and can be found 

in Sorenson (14) page 254. 

Using Lemna I, in reverse Equation B-11 can be written as 

VlP 

} (B-14) 

Introduce the identities 

W = ^ (B-15) 

W-V = (B-16) 

and upon substitution and rearrangement Equation B-14 becomes 

Pg = [MgV"&g - MgV'^(W-V)v"Hlg 

+ MgV"^(W-V)W'^(W-V)v"^g] (B-17) 

Collecting terms and expanding Equation B-17 becomes 

Pg = {Mg [V"l - V"^(W-V)V"^ + V"^(W-V)w"^(W-V)v"^]Mg}"^ 

= {Mg [V"l - (I - w"Mv"^]Mg3"^ 

= {Mg [V"^ - V'^ + w"^]Mg3'^ = (MgW'Hlg)"^ (B-18) 
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Substituting for W Equation B-18 is 

Combining Equations B-6 and B-8 the expression for is 

-1 -1 T -1 
P = C + C B P-BC • (B-20) 
N O 

Using Lemma I and Equation B-15 

-1 * * T -L * 
^ - W Vn (B-21) 

The insertion of Equation B-21 and the expression for B into Equation B-20 

produces 

* * T -L * 

(B-22) 

* * T -L T -L T -1 * * T -1 * 
+ <^N - W \w - W \^N> 

Multiplying the terms gives 

= 'N - VN + 

- WS#" Vs'^»"\'N 

- Vŝ ''" VS'VN 

Substituting Equation B-16 into Equation B-23 produces 

»K - 'N - VN 

- Vs '̂VN + VN 
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N ?,, = ?» - #'VN + ?S'"S ŝ'§ '̂Vi 

»„ = ?! - VN 

Using Equation B-15, Equation B-26 becomes 

T 
Solving for from Equation B-7 

Pg = - c'Vpg 

or 

-1 T 
P3 = - PgB(c "-y 

Using the equations for B, C , and Equation B-15 

'3 = -

Expanding and using Equation B-16 gives 

VK + 

" - Vn + VN -

Using Equation B-15 

+^)'\4 
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Then Equations B-19, B-27, and B-31 are the expressions to be 

used in the partitioned a posteriori covariance matrix P summerized 

here. 

where 

P = 

!  ̂ 31 
I 

(B-33) 

P„ = 

P„ = 
N 

P« = 

N J  

(B-34) 

(B-35) 

(B-36) 
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XI. APPENDIX C 

Bakker's (1) a posteriori covariance matrix, in partitioned form 

(see Equation 2.23), is written as 

P = 

, * * 

S& N 

- "Xc -
*, * T *T 

* * 
bg and (see Equation 1.45 and 1.46) are 

* - T  * T  - I T  *  T  - 1  
bg = [M^(MjjP2M' + V) + V) 

< = % v y + v ) - '  [ % - % ]  

where P^ - [P^^ | P^] 

(C-1) 

(C-2) 

(C-3) 

(C-4) 

P can be written in partitioned form as 

P = 

1 J 

Introduce the following notation. 

Let Z = (MJJP^M''^ + V) 

(C-5) 

(C-6) 

Using Equation C-4 and the partitioned form of M, Equation C-6 

can be written as 

^  "  v r v + v x + V )  (C-7) 
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Also let 

A = (C-8) 

Then 

+  V ) = Z - A â w  ( C - 9 )  

A look at Equations C-1 and C-5 indicate that 

Using Equation C-2 and C-6 through Equation C-9 Equation C-10 can 

be written as 

Pg = (MgZ"^g)"Hl^z"^(Z - A)(Z^)"^Mg[Mg(Z^)"^Mg]"^ 

= (MgZ"^g)"^M^(I - z'^A)(Z^)"^Mg[Mg(z'^)"^Mg]"^ 

= (MgZ"^g)"^[Mg(Z^)"^Mg - M^z"^A(Z^)'^g](Mg(Z^)"^Mg)"^ 

= (MgZ"^g)"^[l - MgZ"^A(z'^)"Hlg(MgZ"^Mg)"^] (C-11) 

Using Equation C-8, Equation C-11 becomes 

P j  =  C I  -  « g Z ' ( « y ' \ )  

= (MgZ'^g)"^ [I - MgZ'^P^] (C-12) 

T 
Post multiply both sides by Mg and using Equation C~8 we have 

PgM^ = CMgZ"lMg)"l[MT - M^Z'^A] (C-13) 

but A = (Z - W), therefore. Equation C-13 becomes 

PgMg = (MgZ"^Mg)"^[Mg - M^z'^(z-ff)] = (MgZ'^g)"^ 

[Mg - Mg + MgZ'V] = (MgZ"Hlg)"HlgZ"^J (C-14) 
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Now post multiply both sides by W'^g which yields 

PgMgW'Hig » (MgZ"Slg)"^MgZ"^Mg = I (C-15) 

Post multiplying both sides by (MgW yields 

Pg = (M^w'Hlg)"^ = [Mg(yX + V)"^Mg] (C-16) 

which is the same as the Pg from the direct approach. 

Next, look at the P^ term which is 

& = <  -  + " ' C  

Using Equation C-2 and C-6 through C-9, Equation C-3 can be written as 

"H - #'^1:1 - ] (C-W) 

However, note in Equation C-14 if both sides are post multiplied 

by W ^ we have 

PgM^"^ = (MgZ"Hlg)"HlgZ"^ (C-19) 

Then using this result Equation C-18 becomes 

••k ' (C-20) 

* T 
Using Equation C-20 and upon factoring Equation C-17, PjgMjj becomes 

«N = PR - 'X 
(C-21) 

+ [z"l - z"^gPgM^"^]w[w"\PgM^(z"^) - (Z^)"^] 3 MjjP* 

Let X be equal to the term in the brackets Then multiplying 

and rearranging terms X becomes 
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X = Z'hl - MgPgMgW"^] + [I - MgPgMgW"^]^(Z^)"^ 

+ Z'h [w'^gPgM^(Z^)"^ - (Z^)"^] 

- z'^PgM^"^ [Ww"HlgPgMg(Z^)"^ - (Z^)"^] (C-22) 

Further multiplication yields 

X = Z"1[I - MgPgb^"^] + [I - MgPgMgW"^]^(Z^)'^ 

+ z"SlgPg)^(z''^)"^ - Z"^J(Z^)"^ + z"^gPgMgW"^(Z^)"^ 

- z'^gPgM^"^gPgMg(Z^)"^ (C-23) 

The last term in Equation C-23 can be reduced by noting that 

M^"^g « Pg^, therefore 

= z"^gPgMg(Z^)"^ (C-24) 

This term cancels the previous term in Equation C-23, and 

Equation C-23 becomes 

X = z"i - z"HlgPgl^"^ - w'^gPgi^cz''^)"^ 

+ z"^gPgl^(Z^)"^ +Z"^A(Z^)"^ (C-25) 

Pre-multiplying and post-multiplying both sides of Equation C-25 by W 

gives 

W X W = WZ"\f - WZ'HigPgMg - HgPgl^Cz""^)"^ . 

+ WZ'^gPgl^ (Z^) + WZ'^A (zf) 'h (C-26) 



www.manaraa.com

130 

Observe that W = Z-A so 

WZ"^ = I - AZ"1 (C-27) 

Using Equation C-27, Equation C-26 becomes 

W X W = W - Âz'hr - MgPgi^ + Az'SigPgi^ 

- Az'^MgPgl^(z''^)"^ + A(Z^)"^ - Az'^ACz"^)"^ (C-28) 

Note that 

W = - A^ (C-29) 

then 

(Z^)'^J = I - (z'^)"V (C-30) 

Using this result Equation C-28 becomes upon canceling terms 

W X W = W - MgPgt^ + (AZ"^gPgt^ - A + AZ"^A)(Z'^)"V (C-31) 

Let Y equal the identity in the first parenthesis and substitute the 

following equation 

PgMg = (MgZ"Hlg)'^gZ"^ (C-32) 

A = (C-33) 

to give for Y the following form 

-  v r ^ + ( c - 3 4 )  

which reduces to 

^ (c-ss) 
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Now substituting Equation C-8 we have 

Y - - A + AZ ^A (C-36) 

Using Equation C-27 this reduces to 

Y = A(I - AZ"1) - A + AZ"^A s Q (C-37) 

Then Equation C-31 is 

W X W = W - MgPgMg (C-38) 

Upon pre- and post-multiplying both sides by W Equation C-38 becomes 

X ={W"^ - w"^gPgM } (C-39) 

then substituting Equation C-21 we have 

-1 
Using the expression for W 

VN 

which is identical to the obtained in the direct approach. 

Next examine the Pg term given by 

'3 - - WN + "s VX + 

Using Equations C-3 and C-6 througji C-9, Pg becomes 

^3 - • 
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^ yip? 'ft 
Note that bgWbg = Pg and factoring Equation C-41 can be written as 

r * * T -I T T -ll * 
P3 = [- bg + bgW(Z^) - PgMg(Z^) 1]% (C-42c) 

W can be written as Z-A; however, we know that W = W^ = Z^ - A^ so 

(C-43) W(Z^)"^ = I - A^(Z^)"^ 

Thus 

P3 = [-

Substituting Equation C-2 and C-6, Equation C-43 is 

Using Equation C-14 

P3 = [-

T T 
Observe that A = Z - W so 

(C-44) 

P3 = C- (M^Z"^g)"^gZ"^A^(Z^)"^ - PgM^(Z^)"^]Mj,P* (C-45) 

(C-46) 

(C-47) 

P3 = Pg!^[- W"^(Z^ - W)(Z^)"^ - (Z^)'^]MjjP* 

= PgMg[- w'Ycz^)"^ + (Z^)"^ - (Z^)"^]% 

• VN 

Substituting expression for W 
-1 

which is identical to the in the direct approach. 

(C-48) 

(C-49) 



www.manaraa.com

133 

XII. APPENDIX D 

The number of multiplies will be counted for both the indirect and 

direct filter. This is accomplished by proceeding through the algorithms 

for the indirect and direct filters. 

The number of multiplications when two matrices are multiplied 

together is first determined. A (BxC) matrix denotes B rows and 

C columns. The product of a (BxC) matrix times a (CxD) matrix is written 

as 

(BxC) X (CxD) (D-1) 

The number of multiplies Involved in this calculation Is given by 

M = BCD (D-2) 

In order to determine the multiplies involved in the following equation, 

some nomenclature will be introduced. For example, the product of 

matrices XY will be written as 

XY = (BxC) X (CxD) ="BCD" (D-3) 

That is matrix X is a (BxC) matrix and Y is a (CxD) matrix. Thus, 

BCD multiplies are involved in the product of XY. 

First, calculate the number of multiplications involved in the 

direct filter. The sizes of the respective matrices are as follows: 

Mj » (1 X (R + G)) 

M^g = (1 X R) 

^IN = (1 X G) 

P = ((R + G)x(R + 0» 

Pjj = (G X G) 
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X ((R + G)x 1) 

^1 
(R X R) 

b (R X 1) 

(R X 1) 

(G X 1) 

(G X G) 

< (G X G) 

Assume that the first R measurement yield an independent linear 

T 
combination of the R signal variables. That is, R^M^g 4 0 for the first 

R measurements and (I - = 0 at the R^^ measurement. Thus, 

steps 3 through 7 in the algorithm will be calculated R times and steps 

9 through 11 will be calculated (P-R) times. Each step of the algorithm 

will be listed and the number of multiplies will be counted. 

1. No multiplies. 

2. No multiplies. 

3. Compute 

^1-l^lS " * (^1) = . 

However, the first step is trivial, because R^ = I. Therefore, 

no multiplies are needed for the first measurement. Thus, the total 

2 
number of multiplies for this step is "R (R-1)". 

4. Calculate the gain matrix by 

^iS^l-l^lS 

0 
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T 
Is computed in steps 3, so the additional computlon is 

^iS^^i-l^ig) ° X (Rxl) = "R" 

T 
An additional "R" multiplies is required when is 

1 
multiplied by =— • 

^iS^i-l^iS 

2 
Therefore, the total number of multiplies for this step is "2R(R)" = "2R 

5. Update the estimate of the states by 

+ b^(y^ - M^x^) 

^i*i ̂  x(R+G))x((R-W)x 1) = "R+G". 

However, for the first measurement x^ only contains terms for 

the noise variables, which only require "G" multiplies. Now, 

bi(y^ - M^xp = (Rxl) X (1x1) = "R", 

because b., = 0. 
N 

Therefore the total number of multiplies for step five is 

"(R+G)(R-1) + R^ + G" = "2R^ + RG - R" . 

6. Update the covariance matrix by 

Pj = (I - b^Mj)Pj.^(I -

bjM^ = ((R+G) xl) X (1 x(R+G))= "(R+G)^" 

(I - = (R x(R+G))x((R+G)x(R+G))= "R(R+G)^" . 

Then the product of 



www.manaraa.com

136 

Also, 

and 

[(I - (I -

= ((R+G)x(R+G))x((R+G)x R) = "R(R-W)^" 

b^Vj, = (Rxl) X (1x1) = "R" 

(b^V^)b^ = (Rxl) X (IxR) = "R^" . 

Therefore, the total number of multiplies in step 6 is 

"R(R4C)^ + 2R^(R+G)^ + R^ + R^" 

= "2R^ + 2R^ + R^ + 4R^G + 2R^G^ + 2R^G + RG^" 

7. Update R^ by 

Ri = (I - ̂ is^is^^-l 

which can be written as 

R^ = (RxR) X (RxR) = "R^" 

The first step doesn't need to be calculated since R^ = I. Thus, the 

total number of multiplies for step seven is "(R^ - R^)" . 

8. No multiplies involved. 

9. Calculate the gain matrix by 

^i-l"i =((R+G)x(R+G)) X ((R+G)x 1) = "(R+G)^" 

and 
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= (1 x(R+G))x ((R+Qx 1) = "(R-H3)" . 

T 1 
The product of P .M. by will produce an additional 

(^i^i-ii + ̂ i> 

"R+G" multiplies. Therefore, total number of multiplies for step nine is 

"[(R+G)^ + 2 (R+G)] (P-R) " . 

10. Update the estimate by 

*1 - - Vt-i> 

Also, 

= (1 X (R-K5)) X ((R-K;) X 1) = "R+G" . 

b^(y. - = ((R+G)x 1) x (1 x 1) = "R+G" . 

Therefore, step seven produces "2(R+G)(P-R)" multiplies. 

11. Update the covariance matrix by 

•"i = ^1.1 -

Now, 

which is already calculated. Then 

(Pi_lM^)s^ =((R+G)x 1) X (1 x(R4G))= "(R+G)^" . 

2 
Therefore, the total number of multiplies in step eleven is "(R+G) (P-R)". 

.The remaining multiplies occur in the extrapolution of the states 

and covariance matrices to the next time interval. The estimate of the 

states are extrapolation by 
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XJJ = = (GxG) X (Gxl) = "G^" 

The covarlance matrix is given by 

~ * (GxG) X (GxG) = "2G^" . 

This completes the count on the number of multiplies for the 

direct filter between one time interval. Denote the total number of 

multiplies for the direct filter as and summing the multiplies for 

each step becomes 

Mjj = 3R̂  - - R - 3RG + 4R̂ G + 2R̂ Ĝ  - 4R̂ G - 2RĜ  

+ 20̂  + Ĝ  + P(2R̂  + 4RG + 2Ĝ  + 4R + 4G) (D-4) 

With reference to Figure 4.2, the number of multiplication for the 

indirect filter will now be determined. The algebraic operator will 

consist of two matrix multiplications to give the desired + N^(t) 

equation and the N^(t) noise equations. That is there will be the 

following two matrix multiplies : 

'N 

n2 

Cy = (D-5) 

N 
(P-R) 

and 
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Dy = (D-6) 

+ N^(t) 

Sg + NgXt) 

A + J 

Now since y is a (Exl) matrix, then G is a ((P-R) x P) matrix. The product 

of Cy will involve "P(P-R)" multiplies. Similarity Dy = (RxP) x (Pxl) 

= "RP" . 

Consider the inputs to the Kalman filter. They are linear combinations 

of the noise measurements. Thus, N^(t), N^(t), ' ^^(t) will not 

be uncorrelated with each other, which means that sequential processing 

is not possible with the (P-R) inputs to the Kalman filter. Thus, they 

must all be processed at once. The matrices involved with the Kalman 

filter part of the indirect filter are of the following size: 

M = ((P-R)x G) 

P = (G X G) 

P* = (G X G) 

i = (G X G) 

X = (G X 1) 

b = (G x(P-R)) 

The first step in the Kalman filter is to calculate the gain matrix 

given by 

b » P*M^(MP*)f +V)"^ (D-7) 
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PV = (GxG) X (G x(P-R))= "G^(P-R)" and M(PV) =((P-R)x G) x (G x(P-R)) 

2 
a "G(P-R) However, a (P-R)x(P-R) inverse must now be performed, and 

a conservative number of multiplies of an inverse of this size is 

3 * T 
"2(P-R) Then the product of P M times the inverse involves a 

(G X (P-R))X ((P-R)x (P-R)) matrix which yields "G(P-R)^" multiplies. 

Therefore, the total number of multiplies in the calculate of the 

gain matrix is "G^(P-R) + 2G(P-R)^ + 2(P-R)^". 

The update of the a priori covariance matrix is 

JL ^ ^ T T 
P = P  -  b M P  =  P  -  P  M b  ( D - 8 )  

ic T 
P M has already been calculated, so the only multiplies involved is 

(P*M^)b^ = (G x(P-R))x ((P-R)x G) = "G^(P-R)". 

The update of the signal state is given by 

X = x' + b(y - Mx') (D-9) 

Mx' = ((P-R)x G) X (Gxl) = "G(P-R)" and then b(y - Mx') = (G x (P-R)) x 

(CP-R)x 1) = "G(P-R)". Therefore, the total multiplies involved in updating 

the state estimate is "2G(P-R)", 

The Kalman filter yields the optimal estimate of G noise variables. 

However, a matrix multiply Is needed to get the best estimate of N^(t). 

This matrix multiply will be of the form 

and the number of multiplies involved is "RG". 

The extrapolation of the covariance matrix and noise variables ahead 

N, 

N, 
_ R_ 

(D-10) 
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"fc 
in time will be identical to that of the direct filter. That is P = 

"2G^" multiplies and x* = "G^" multiplies. 

This conq>lete8 the count of multiplies for the indirect filter at 

one time interval. Denote the total number of multiplies for the direct 

filter as and summing it becomes 

Mj. = + 2(P-R)(Ĝ +G) + 2G(P-R)2 + 2(P-R)̂  + RG 

+ 2G^ + G^ (D-11) 

The amount of memory for the indirect and direct filter are calculated 

next. It will be noted which matrices need to be stored. A count on the 

memory requirement will be done in the following manner. If an (n x n) 

2 
matrix needs to be stored it will count as n memory cells. This is, 

2 
there are n characters in an (n x n) matrix. 

First, consider the direct filter. The matrices that need to be 

stored are as follows : 

R^ = (R X R) 

= ((R+G)x 1) 

Pj, = (R+G)x(R+G) 

6 = (G X G) 
N 

Hjj = (G X G) 

V  = ( 1 x 1 ) ,  b u t  t h e r e  a r e  P  o f  t h e m  

M = (P x(R+G) 

Y^ = (P X 1) 
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The total of the memory cells needed so far is 

"R^ + (R+G) + (R+G)^ + 2G^ + 2P + P(R+G)" 

Now we will proceed through the algorithm and determine what additional 

memory needs to be stored. 

1. No additional memory needed. 

2. No additional memory needed. 

T 
3. R^ ^ gM^g = (RxG), which is used later to calculate b^, 

so needs to be stored. 

No additional memory is needed here, because it can be computed without 

storing additional memory. However, b^g will need to be stored because 

it is used later. Thus, b^g = ((R+G)x 1). 

5. Compute = xj + b^g(y^ - M^x') 

Now can be calculated then subtracted from y^ and then 

multiplied by b^g which is then added to x^ to give x^,. Then x^ is 

put back in place of x^ and hence, additional memory is not needed 

in this step. 

6. ?! = (I - + b.V^b^ 

T 
Now bj^Vj^ can be calculated then post-multiplied by b^ , then 

this will need to be put in memory to be added later. This requires the 

storage of a (R x R) matrix. Now, bj,M^ can be calculated and then 

subtracted from I, but this will have to be put in memory to post-multiply 
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T 
by (I-bjM^) . Now this will require an (R+G)x(R+6) matrix to be stored. 

Now will just replace so no more additional memory is needed. 

7. = (I - ̂ is^iS^^i-1^^ " ̂iS^iS^ 

This step will not require any additional memory because 

(I - is already stored. 

8. No memory needed. 

T 

T 
will need to be stored and this is an (j[R+G)x 1) matrix. 

The rest of the calculations will not require any more storage, except 

for bj, which will need to be stored for the remaining-steps and it is 

a ((BxG) X 1) matrix. 

10. This step will not require any memory, for the same reason 

as step 5. 

T 
11. This step will not require any memory because 

T T 
Pi which is already stored and by is also stored. Again P^ will 

just replace P^^^. 

12. - 15, The rest of the steps will not require additional memory 

because all quantities are already been stored and the new calculated 

matrix will just replace the old ones. 

Note, we can eliminate memory required in steps 3-7, because they 

can be put in the slots of 9 througjh 10. Thus, the total memory cells 

needed for the direct filter, denoted by C^, is 
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CJJ = 2R^ + 3R + 3G + 2RG + 3G^ + 2P + PR + PG (D-12) 

In the Indirect filter the following matrices must be stored: 

= (P X 1) 

É = (G * G) 

P = (G X G) 

H = (G X G) 

V = (P-R)x (P-R) 

M = (P x(R+G)) 

X = (G X 1) 

Also, the matrices that pre-multiplies the to give the + N^(t) 

equation and the N^(t) equation. These are a (R-fP) matrix and a 

((P'-R)x P) matrix. Also needed is a matrix that multiplies the outputs 

of the Kalman filter to get the N^(t). It is a (R+G) matrix. Also 

needed to be stored will be the + N^(t) and the N^(t) which are 

(R X 1) and (P-R) X 1 matrices respectively. Also needed is the M 

matrix for the N^(t)*s. This is ((P-R)x G) matrix. 

The algorithm for the indirect filter will be gone through and 

the additional memory needed will be counted. 

^ m * fn ^1 
1. b = P M (MP M + V) 

* T 
P M can be calculated and will need to be stored. This is of 

* IT 
size (G x(P-R)), Then (MP M + V) can be calculated without additional 

memory, but the inverse will require a (P-R)x(P-R) memory cells in order 

to find the inverse. The gain matrix b = (G x (P-R)) matrix will be 

stored. 
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2, P = P* - b(MP*)f + V)b^ will not require additional memory, 

because b(MP*M^ + V) = P*M^ is already stored and so is b^. P will 

* 
just replace P . 

3, X = + b^(y^ - Mj,Xj^) will not require any additional memory. 

The update of the covariance and states will not require any more 

memory either. Thus, the total memory needed for the indirect filter, 

denoted by C^, is 

Cj = 2P + 3G^ + 4P^ - 5PR + 4R^ - RG + G + 3PG (D-

%i8 confie tes the count of memory cells needed for the indirect and 

direct filters. 
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